skip to main content


Title: Informing a Risk Prediction Model for Binary Outcomes with External Coefficient Information
Summary

We consider a situation where rich historical data are available for the coefficients and their standard errors in an established regression model describing the association between a binary outcome variable Y and a set of predicting factors X, from a large study. We would like to utilize this summary information for improving estimation and prediction in an expanded model of interest, Y|X,B. The additional variable B is a new biomarker, measured on a small number of subjects in a new data set. We develop and evaluate several approaches for translating the external information into constraints on regression coefficients in a logistic regression model of Y|X,B. Borrowing from the measurement error literature we establish an approximate relationship between the regression coefficients in the models Pr(Y=1|X,β), Pr(Y=1|X,B,γ) and E(B|X,θ) for a Gaussian distribution of B. For binary B we propose an alternative expression. The simulation results comparing these methods indicate that historical information on Pr(Y=1|X,β) can improve the efficiency of estimation and enhance the predictive power in the regression model of interest Pr(Y=1|X,B,γ). We illustrate our methodology by enhancing the high grade prostate cancer prevention trial risk calculator, with two new biomarkers: prostate cancer antigen 3 and TMPRSS2:ERG.

 
more » « less
NSF-PAR ID:
10398888
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series C: Applied Statistics
Volume:
68
Issue:
1
ISSN:
0035-9254
Page Range / eLocation ID:
p. 121-139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. <italic>Abstract</italic>

    We consider the situation where there is a known regression model that can be used to predict an outcome,Y, from a set of predictor variablesX. A new variableBis expected to enhance the prediction ofY. A dataset of sizencontainingY,XandBis available, and the challenge is to build an improved model forY|X,Bthat uses both the available individual level data and some summary information obtained from the known model forY|X. We propose a synthetic data approach, which consists of creatingmadditional synthetic data observations, and then analyzing the combined dataset of sizen + mto estimate the parameters of theY|X,Bmodel. This combined dataset of sizen + mnow has missing values ofBformof the observations, and is analyzed using methods that can handle missing data (e.g., multiple imputation). We present simulation studies and illustrate the method using data from the Prostate Cancer Prevention Trial. Though the synthetic data method is applicable to a general regression context, to provide some justification, we show in two special cases that the asymptotic variances of the parameter estimates in theY|X,Bmodel are identical to those from an alternative constrained maximum likelihood estimation approach. This correspondence in special cases and the method's broad applicability makes it appealing for use across diverse scenarios.The Canadian Journal of Statistics47: 580–603; 2019 © 2019 Statistical Society of Canada

     
    more » « less
  2. Abstract

    There is a growing need for flexible general frameworks that integrate individual-level data with external summary information for improved statistical inference. External information relevant for a risk prediction model may come in multiple forms, through regression coefficient estimates or predicted values of the outcome variable. Different external models may use different sets of predictors and the algorithm they used to predict the outcome Y given these predictors may or may not be known. The underlying populations corresponding to each external model may be different from each other and from the internal study population. Motivated by a prostate cancer risk prediction problem where novel biomarkers are measured only in the internal study, this paper proposes an imputation-based methodology, where the goal is to fit a target regression model with all available predictors in the internal study while utilizing summary information from external models that may have used only a subset of the predictors. The method allows for heterogeneity of covariate effects across the external populations. The proposed approach generates synthetic outcome data in each external population, uses stacked multiple imputation to create a long dataset with complete covariate information. The final analysis of the stacked imputed data is conducted by weighted regression. This flexible and unified approach can improve statistical efficiency of the estimated coefficients in the internal study, improve predictions by utilizing even partial information available from models that use a subset of the full set of covariates used in the internal study, and provide statistical inference for the external population with potentially different covariate effects from the internal population.

     
    more » « less
  3. Summary

    Comparative effectiveness research often involves evaluating the differences in the risks of an event of interest between two or more treatments using observational data. Often, the post‐treatment outcome of interest is whether the event happens within a pre‐specified time window, which leads to a binary outcome. One source of bias for estimating the causal treatment effect is the presence of confounders, which are usually controlled using propensity score‐based methods. An additional source of bias is right‐censoring, which occurs when the information on the outcome of interest is not completely available due to dropout, study termination, or treatment switch before the event of interest. We propose an inverse probability weighted regression‐based estimator that can simultaneously handle both confounding and right‐censoring, calling the method CIPWR, with the letter C highlighting the censoring component. CIPWR estimates the average treatment effects by averaging the predicted outcomes obtained from a logistic regression model that is fitted using a weighted score function. The CIPWR estimator has a double robustness property such that estimation consistency can be achieved when either the model for the outcome or the models for both treatment and censoring are correctly specified. We establish the asymptotic properties of the CIPWR estimator for conducting inference, and compare its finite sample performance with that of several alternatives through simulation studies. The methods under comparison are applied to a cohort of prostate cancer patients from an insurance claims database for comparing the adverse effects of four candidate drugs for advanced stage prostate cancer.

     
    more » « less
  4. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  5. Summary

    Primary analysis of case–control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case–control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case–control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case–control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.

     
    more » « less