Invasive species are organisms moved from one region to another by humans. Although they are not always harmful to the recipient community, their lack of evolutionary history with their new community can set the stage for destruction. In a world of increasing interconnectivity and warming waters, we expect invasive species will continue to be introduced and that their ranges will expand as more areas become suitable habitats. At this critical point in our planet’s natural history, the need to understand where invasive species can survive and how to detect them are important. Here, I begin with a review of invasive species physiology measurements using species identified as invasive through the Marine Invader Monitoring and Information Collaborative. These data points highlight inconsistencies in measurement technique as well as the importance that acclimation temperature and life stage play on thermal thresholds. Based on the noise in the data, I recommend laboratory experiments to understand the absolute maximum and minimum survivable temperatures for each species, followed by field observations of temperatures needed to grow and reproduce. Then, using a newer invader to Maine Hemigrapsus sanguineus, I measured thermal thresholds for summer and winter-acclimated crabs and found shifts in thermal thresholds as well as evidence that winter temperatures are stressful for these crabs. Lastly, to effectively detect invasive species early, I tested and designed assays for environmental DNA (eDNA) detection of 9 invasive or nuisance species in the Gulf of Maine. Using laboratory experiments and a two-year time series in a local tide pool, I found that not all of the studied invertebrate species can be detected equally. Some organisms with soft, exposed tissues shed eDNA consistently with their abundance, while organisms with exoskeletons or shells do not. This trend does not hold true for all of the studied taxa, but this premise alongside an understanding of natural history and morphology helps clarify the observed trends. Thus, eDNA techniques should not be applied equally across all taxa for management purposes without a clear understanding of the message of the signal. Overall, I made recommendations to better predict suitable habitats for invasive species, characterized thresholds for an understudied invasive species in New England, and continued building upon the challenges of detecting invertebrates with eDNA.
more »
« less
Herpetofaunal ecology (often) makes sense in the light of thermal physiology
An underlying rule in biology is that temperature affects physiological processes. This is salient in ectothermic organisms such as herpetofauna, which must cope with the challenges of changing body temperatures. The limitations associated with living in a dynamic thermal environment often translate into patterns of herpetofaunal distribution and behavior. As such, an understanding of thermal physiology and thermal environment are foundational to studies of herpetofauna. Beginning with a brief review of the contributions of Hal Heatwole and Hal Cogger to the field of thermal ecology, I explore how some methodologies and have changed over time with technological improvements to tackle emergent issues including invasion by herpetofauna and understanding of disease processes. I discuss recent applications of thermal ecology in my own research to understand and predict distribution of invasive herpetofauna, and to understand disease processes in wild populations. Specifically, I discuss the predictive value of critical thermal minima on current and future distributions of invasive lizards introduced to Florida, USA (Leiocephalus carinatus and Furcifer pardalis), obtained through different experimental and computational methods. I also discuss planned methodologies to assess the role of thermoregulation in combatting infection of Batrachochytrium dendrobatidis and B. salamandrivorans in plethodontid salamanders.
more »
« less
- Award ID(s):
- 2109663
- PAR ID:
- 10398990
- Date Published:
- Journal Name:
- The 55th Scientific Meeting of Australian Society of Herpetologists
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
McMahon, Katherine (Ed.)This work significantly advances our understanding of biodiversity and microbial interactions in herptile microbiomes, the role that fungi play as a structural and functional members of herptile gut microbiomes, and the chemical functions that structure microbiome phenotypes. We also provide an important observational system of how the gut microbiome represents a unique environment that selects for novel metabolic functions through horizontal gene transfer between fungi and bacteria. Such studies are needed to better understand the complexity of gut microbiomes in nature and will inform conservation strategies for threatened species of herpetofauna.more » « less
-
Synopsis Human activities are rapidly changing ecosystems around the world. These changes have widespread implications for the preservation of biodiversity, agricultural productivity, prevalence of zoonotic diseases, and sociopolitical conflict. To understand and improve the predictive capacity for these and other biological phenomena, some scientists are now relying on observatory networks, which are often composed of systems of sensors, teams of field researchers, and databases of abiotic and biotic measurements across multiple temporal and spatial scales. One well-known example is NEON, the US-based National Ecological Observatory Network. Although NEON and similar networks have informed studies of population, community, and ecosystem ecology for years, they have been minimally used by organismal biologists. NEON provides organismal biologists, in particular those interested in NEON's focal taxa, with an unprecedented opportunity to study phenomena such as range expansions, disease epidemics, invasive species colonization, macrophysiology, and other biological processes that fundamentally involve organismal variation. Here, we use NEON as an exemplar of the promise of observatory networks for understanding the causes and consequences of morphological, behavioral, molecular, and physiological variation among individual organisms.more » « less
-
Abstract Molecular technologies have revolutionized the field of wildlife disease ecology, allowing the detection of outbreaks, novel pathogens, and invasive strains. In particular, metabarcoding approaches, defined here as tools used to amplify and sequence universal barcodes from a single sample (e.g., 16S rRNA for bacteria, ITS for fungi, 18S rRNA for eukaryotes), are expanding our traditional view of host–pathogen dynamics by integrating microbial interactions that modulate disease outcome. Here, I provide an analysis from the perspective of the field of amphibian disease ecology, where the emergence of multi-host pathogens has caused global declines and species extinctions. I reanalyzed an experimental mesocosm dataset to infer the functional profiles of the skin microbiomes of coqui frogs (Eleutherodactylus coqui), an amphibian species that is consistently found infected with the fungal pathogen Batrachochytrium dendrobatidis and has high turnover of skin bacteria driven by seasonal shifts. I found that the metabolic activities of microbiomes operate at different capacities depending on the season. Global enrichment of predicted functions was more prominent during the warm-wet season, indicating that microbiomes during the cool-dry season were either depauperate, resistant to new bacterial colonization, or that their functional space was more saturated. These findings suggest important avenues to investigate how microbes regulate population growth and contribute to host physiological processes. Overall, this study highlights the current challenges and future opportunities in the application of metabarcoding to investigate the causes and consequences of disease in wild systems.more » « less
-
Abstract Interactions between humans, animals, and the environment facilitate zoonotic spillover—the transmission of pathogens from animals to humans. Narratives that cast modern humans as exogenous and disruptive forces that encroach upon “natural” disease systems limit our understanding of human drivers of disease. This review leverages theory from evolutionary anthropology that situates humans as functional components of disease ecologies, to argue that human adaptive strategies to resource acquisition shape predictable patterns of high‐risk human–animal interactions, (2) humans construct ecological processes that facilitate spillover, and (3) contemporary patterns of epidemiological risk are emergent properties of interactions between human foraging ecology and niche construction. In turn, disease ecology serves as an important vehicle to link what some cast as opposing bodies of theory in human ecology. Disease control measures should consider human drivers of disease as rational, adaptive, and dynamic and capitalize on our capacity to influence ecological processes to mitigate risk.more » « less
An official website of the United States government

