skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultraviolet-visible spectroscopy absorbances for dissolved organic matter from Lake Mendota from June – November 2017
Dissolved organic matter (DOM) is a complex mixture of organic compounds found in all natural waters. Its composition affects its reactivity towards numerous processes. Its composition is a function of both its source (e.g., allochthonous or autochthonous) as well as the extent of environmental processing it has undergone (e.g., chemical or biological degradation). Ultraviolet-visible (UV-vis) spectroscopy is an analytical technique commonly used to assess the composition of dissolved organic matter in water samples. Here, we present spectra from Lake Mendota samples collected from June - November in 2017 at the surface of Lake Mendota as well as at specific depths within the water column. All samples were collected near the NTL-LTER research buoy. Absorbance values are listed for wavelengths 200 - 800 nm for each sample.  more » « less
Award ID(s):
2025982
PAR ID:
10399077
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dissolved organic matter (DOM) is a complex mixture of organic compounds found in all natural waters. Its composition affects its reactivity towards numerous processes. Its composition is a function of both its source (e.g., allochthonous or autochthonous) as well as the extent of environmental processing it has undergone (e.g., chemical or biological degradation). Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) allows for the characterization of dissolved organic matter at the molecular level. The water sample was collected near the NTL-LTER research buoy on Lake Mendota. Formula assignments were made to raw mass to charge ratios detected in the mass spectrum using a custom processing script and resulting in a list of chemical formulas making up the DOM sample. 
    more » « less
  2. Abstract Dissolved organic matter (DOM) is an intermediate between organic carbon formed by primary producers and carbon dioxide (CO2) produced through respiration, making it a key component of the carbon cycle in aquatic ecosystems. Its composition influences the routes of mineralization. Here, we evaluate DOM composition as a function of time and depth in Lake Mendota, a highly productive eutrophic lake that stratifies in warm months and is located in Madison, Wisconsin, USA. Dissolved organic carbon concentrations and optical properties are presented for 73 samples collected at a single location at varying depths within the water column from June to November. A subset of samples is analyzed by Fourier transform‐ion cyclotron resonance mass spectrometry (FT‐ICR MS) to investigate DOM composition at the molecular level. Temporally, increases in more oxidized formulas are observed in both the epilimnion and hypolimnion. At the surface, correlations between DOM formulas and both chlorophyll concentrations and light intensity show that photochemical reactions contribute to DOM oxidation. In the hypolimnion, redox conditions and interactions with sediments likely influence temporal compositional change. Our results show DOM composition varies with depth with more highly oxidized formulas identified deeper in the water column. However, DOM composition varies more temporally than by location within the water column. This work has implications for climate change as DOM photooxidation in lakes represents an understudied flux of CO2to the atmosphere. Additionally, lake eutrophication is increasing due to warming temperatures and this data set yields detailed molecular information about DOM composition and processing in such lakes. 
    more » « less
  3. {"Abstract":["The Lake Mendota Microbial Observatory collects routine water physical and chemical\n measurements alongside their microbial samples. This dataset includes measurements of water\n temperature, dissolved oxygen, pH, and conductivity collected at the central Deep Hole,\n collocated with a weather buoy (43°05'58.2"N 89°24'16.2"W). All measurements were collected\n with handheld probes. Data from 2006-2014 was compiled from multiple sources and includes only\n water temperature and dissolved oxygen. Data from 2014-2019 is from the same probe, a YSI Pro\n Plus instrument, and also includes pH and specific conductance. Routine microbial observatory\n sampling continues into the present."]} 
    more » « less
  4. The Lake Mendota Microbial Observatory collects routine water physical and chemical measurements alongside their microbial samples. This dataset includes measurements of water temperature, dissolved oxygen, pH, and conductivity collected at the central Deep Hole, collocated with a weather buoy (43°05'58.2"N 89°24'16.2"W). All measurements were collected with handheld probes. Data from 2006-2014 was compiled from multiple sources and includes only water temperature and dissolved oxygen. Data from 2014-2019 is from the same probe, a YSI Pro Plus instrument, and also includes pH and specific conductance. Routine microbial observatory sampling continues into the present. 
    more » « less
  5. none. (Ed.)
    The concentration and isotopic composition (δC; C/N) of sedimentary organic matter (SOM) in near-shore bays and offshore shelves and basins is impacted by organic matter source (e.g., marine algae, terrestrial plants, and agricultural and sewage runoff) and natural and anthropogenic processes such as pollution, terrestrial runoff, and climate change, which can expand oxygen minimum zones, leading to decreased bottom-water dissolved oxygen (DO) and enhanced organic matter preservation. The factors that affect the sources and concentrations of SOM have not been extensively investigatedin the California margin. The objective of this study was to determine how the SOM concentrations andstable isotopes (δC; C/N) vary between shallow urban bays, offshore shelves, and deep basins and with other factors (water depth, DO and grain size). On cruises in 2018, surface sediments were collected using multicores and van-veen grabs. Samples were collected from shelves (10-14km offshore; 100-300m) and basins (90-130km offshore; 618-997m)and for comparison, urban bays in San Diego. The dissolved oxygen (DO) concentrations of seafloor-water preserved in the multicores were measured with a hand-held DO meter. In the lab, SOM concentrations were determined by Loss on Ignition (5 hours, 550°C) and grain-size distributions were determined by scanning on a CILAS 1190 particle size analyzer. Select sediments were dissolved in HCl and filtered to remove inorganic carbonates and the δC and C/N measured at UC Davis. All sediments were organic rich (2-21%) with mean grain sizes of fi ne sand or silt with variable clay (3-12%). In general, the sands were lower in organic matter (< 5%) compared to silty samples withvariable concentrations (2-22%). The greatest organic matter was found in the deeper hypoxic basins where DO was less than 1.5 mg/L. The δC & C/N were consistent with mixed terrestrial and marine organic sources and there was not a difference in mean values between the bays, shelves and basins.However, the values were highly variable for the urban bay and shelf sediments suggesting heterogenous input. Organic matter in coastal sediments are an important component of the global carbon cycle and abetter understanding of controlling factors is important in the face of climate change and increased anthropogenic impacts. 
    more » « less