skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applying Panarchy Theory to Aquatic Invasive Species Management: A Case Study on Invasive Rainbow Smelt Osmerus mordax
Award ID(s):
2025982
PAR ID:
10399276
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Reviews in Fisheries Science & Aquaculture
Volume:
31
Issue:
1
ISSN:
2330-8249
Page Range / eLocation ID:
66 to 85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Why only a small proportion of exotic species become invasive is an unresolved question. Escape from the negative effects of soil biota in the native range can be important for the success of many invasives, but comparative effects of soil biota on less successful exotic species are poorly understood. Studies of other mechanisms suggest that such comparisons might be fruitful. Seeds of three closely relatedCentaureaspecies with overlapping distributions in both their native range of Spain and their nonnative range of California were grown to maturity in pots to obtain an F1 generation of full sibling seeds with reduced maternal effects. Full sibling F1 seeds from both ranges were subsequently grown in pots with inoculations of soil from either the native or nonnative ranges in a fully orthogonal factorial design. We then compared plant biomass among species, regions, and soil sources. Our results indicate that escape from soil pathogens may unleash the highly invasiveCentaurea solstitialis, which was suppressed by native Spanish soils but not by soils from California. In contrast, the two non‐invasiveCentaureaspecies grew the same on all soils. These results add unprecedented phylogenetically controlled insight into why some species invade and others do not. 
    more » « less
  2. Synopsis Urbanization promotes the formation of heat islands. For ectothermic animals in cities, the urban heat island effect can increase developmental rate and result in smaller adult body size (i.e., the temperature-size rule). A smaller adult body size could be consequential for invasive urban ectotherms due to potential effects of body size on thermal tolerance, dispersal distance, and fecundity. Here, we explored the effect of urbanization on body size in the spotted lanternfly (Lycorma delicatula), an invasive planthopper (Hemiptera: Fulgoridae) that is rapidly spreading across urban and non-urban settings in the United States. We then evaluated the consequences of spotted lanternfly body size for heat tolerance, a trait with importance for ectotherm survival in urban heat islands. Contrary to our expectations, we found that both male (P = 0.011) and female (P < 0.001) spotted lanternflies were larger in more urbanized areas and that females displayed a positive effect of body size on resistance to hot temperatures (P = 0.018). These results reject plasticity in developmental rate due to the urban heat island effect as an explanation for spotted lanternfly body size and instead lend necessary (but insufficient) support to an adaptive explanation stemming from advantages of larger body size in cities. This study demonstrates a positive effect of urbanization on spotted lanternfly body size, with potential implications for dispersal distance, fecundity, and thermal tolerance in urban areas. 
    more » « less
  3. null (Ed.)
    Abstract Social wasps of the genus Vespula have spread to nearly all landmasses worldwide and have become significant pests in their introduced ranges, affecting economies and biodiversity. Comprehensive genome assemblies and annotations for these species are required to develop the next generation of control strategies and monitor existing chemical control. We sequenced and annotated the genomes of the common wasp (Vespula vulgaris), German wasp (Vespula germanica), and the western yellowjacket (Vespula pensylvanica). Our chromosome-level Vespula assemblies each contain 176–179 Mb of total sequence assembled into 25 scaffolds, with 10–200 unanchored scaffolds, and 16,566–18,948 genes. We annotated gene sets relevant to the applied management of invasive wasp populations, including genes associated with spermatogenesis and development, pesticide resistance, olfactory receptors, immunity and venom. These genomes provide evidence for active DNA methylation in Vespidae and tandem duplications of venom genes. Our genomic resources will contribute to the development of next-generation control strategies, and monitoring potential resistance to chemical control. 
    more » « less