Changes in vegetation distribution are underway in Arctic and boreal regions due to climate warming and associated fire disturbance. These changes have wide ranging downstream impacts—affecting wildlife habitat, nutrient cycling, climate feedbacks and fire regimes. It is thus critical to understand where these changes are occurring and what types of vegetation are affected, and to quantify the magnitude of the changes. In this study, we mapped live aboveground biomass for five common plant functional types (PFTs; deciduous shrubs, evergreen shrubs, forbs, graminoids and lichens) within Alaska and northwest Canada, every five years from 1985 to 2020. We employed a multi-scale approach, scaling from field harvest data and unmanned aerial vehicle-based biomass predictions to produce wall-to-wall maps based on climatological, topographic, phenological and Landsat spectral predictors. We found deciduous shrub and graminoid biomass were predicted best among PFTs. Our time-series analyses show increases in deciduous (37%) and evergreen shrub (7%) biomass, and decreases in graminoid (14%) and lichen (13%) biomass over a study area of approximately 500 000 km2. Fire was an important driver of recent changes in the study area, with the largest changes in biomass associated with historic fire perimeters. Decreases in lichen and graminoid biomass often corresponded with increasing shrub biomass. These findings illustrate the driving trends in vegetation change within the Arctic/boreal region. Understanding these changes and the impacts they in turn will have on Arctic and boreal ecosystems will be critical to understanding the trajectory of climate change in the region.
- Award ID(s):
- 1636476
- PAR ID:
- 10399355
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 17
- Issue:
- 5
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 054042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Alaska’s Yukon-Kuskokwim Delta (YKD) is one of the warmest parts of the Arctic tundra biome and tundra fires are common in its upland areas. Here, we combine field measurements, Landsat observations, and quantitative cover maps for tundra plant functional types (PFTs) to characterize multi-decadal succession and landscape change after fire in lichen-dominated upland tundra of the YKD, where extensive wildfires occurred in 1971–1972, 1985, 2006–2007, and 2015. Unburned tundra was characterized by abundant lichens, and low lichen cover was consistently associated with historical fire. While we observed some successional patterns that were consistent with earlier work in Alaskan tussock tundra, other patterns were not. In the landscape we studied, a large proportion of pre-fire moss cover and surface peat tended to survive fire, which favors survival of existing vascular plants and limits opportunities for seed recruitment. Although shrub cover was much higher in 1985 and 1971–1972 burns than in unburned tundra, tall shrubs (>0.5 m height) were rare and the PFT maps indicate high landscape-scale variability in the degree and persistence of shrub increase after fire. Fire has induced persistent changes in species composition and structure of upland tundra on the YKD, but the lichen-dominated fuels and thick surface peat appear to have limited the potential for severe fire and accompanying edaphic changes. Soil thaw depths were about 10 cm deeper in 2006–2007 burns than in unburned tundra, but were similar to unburned tundra in 1985 and 1971–1972 burns. Historically, repeat fire has been rare on the YKD, and the functional diversity of vegetation has recovered within several decades post-fire. Our findings provide a basis for predicting and monitoring post-fire tundra succession on the YKD and elsewhere.
-
Abstract A multitude of disturbance agents, such as wildfires, land use, and climate‐driven expansion of woody shrubs, is transforming the distribution of plant functional types across Arctic–Boreal ecosystems, which has significant implications for interactions and feedbacks between terrestrial ecosystems and climate in the northern high‐latitude. However, because the spatial resolution of existing land cover datasets is too coarse, large‐scale land cover changes in the Arctic–Boreal region (ABR) have been poorly characterized. Here, we use 31 years (1984–2014) of moderate spatial resolution (30 m) satellite imagery over a region spanning 4.7 × 106 km2in Alaska and northwestern Canada to characterize regional‐scale ABR land cover changes. We find that 13.6 ± 1.3% of the domain has changed, primarily via two major modes of transformation: (a) simultaneous disturbance‐driven decreases in Evergreen Forest area (−14.7 ± 3.0% relative to 1984) and increases in Deciduous Forest area (+14.8 ± 5.2%) in the Boreal biome; and (b) climate‐driven expansion of Herbaceous and Shrub vegetation (+7.4 ± 2.0%) in the Arctic biome. By using time series of 30 m imagery, we characterize dynamics in forest and shrub cover occurring at relatively short spatial scales (hundreds of meters) due to fires, harvest, and climate‐induced growth that are not observable in coarse spatial resolution (e.g., 500 m or greater pixel size) imagery. Wildfires caused most of Evergreen Forest Loss and Evergreen Forest Gain and substantial areas of Deciduous Forest Gain. Extensive shifts in the distribution of plant functional types at multiple spatial scales are consistent with observations of increased atmospheric CO2seasonality and ecosystem productivity at northern high‐latitudes and signal continental‐scale shifts in the structure and function of northern high‐latitude ecosystems in response to climate change.
-
Arctic vegetation communities are rapidly changing with climate warming, which impacts wildlife, carbon cycling and climate feedbacks. Accurately monitoring vegetation change is thus crucial, but scale mismatches between field and satellite-based monitoring cause challenges. Remote sensing from unmanned aerial vehicles (UAVs) has emerged as a bridge between field data and satellite-based mapping. We assess the viability of using high resolution UAV imagery and UAV-derived Structure from Motion (SfM) to predict cover, height and aboveground biomass (henceforth biomass) of Arctic plant functional types (PFTs) across a range of vegetation community types. We classified imagery by PFT, estimated cover and height, and modeled biomass from UAV-derived volume estimates. Predicted values were compared to field estimates to assess results. Cover was estimated with root-mean-square error (RMSE) 6.29-14.2% and height was estimated with RMSE 3.29-10.5 cm, depending on the PFT. Total aboveground biomass was predicted with RMSE 220.5 g m-2, and per-PFT RMSE ranged from 17.14-164.3 g m-2. Deciduous and evergreen shrub biomass was predicted most accurately, followed by lichen, graminoid, and forb biomass. Our results demonstrate the effectiveness of using UAVs to map PFT biomass, which provides a link towards improved mapping of PFTs across large areas using earth observation satellite imagery.more » « less
-
Climate change is expected to increase woody vegetation abundance in the Arctic, yet the magnitude, spatial pattern and pathways of change remain uncertain. We compared historical orthophotos photos (1952 and 1979) with high-resolution satellite imagery (2015) to examine six decades of change in abundance of white spruce (Picea glauca) and tall shrubs (Salix spp., Alnus spp.) near the Agashashok River in northwest Alaska. We established ~3000 random points within our ~5500 hectare (ha) study area for classification into nine cover types. To examine physiographic controls on tree abundance, we fit multinomial log-linear models with predictors derived from a digital elevation model and with arctic tundra, alpine tundra and “tree” as levels of a categorical response variable. Between 1952 and 2015, points classified as arctic and alpine tundra decreased by 31% and 15%, respectively. Meanwhile, tall shrubs increased by 86%, trees mixed with tall shrubs increased by 385% and forest increased by 84%. Tundra with tall shrubs rarely transitioned to forest. The best multinomial model explained 71% of variation in cover and included elevation, slope and an interaction between slope and “northness”. Treeline was defined as the elevation where the probability of tree presence equaled that of tundra. Mean treeline elevation in 2015 was 202 meters (m), corresponding with a June-August mean air temperature greater than 11° Celsius (C), which is greater than 4°C warmer than the 6-7°C isotherm associated with global treeline elevations. Our results show dramatic increases in the abundance of trees and tall shrubs, question the universality of air temperature as a predictor of treeline elevation and suggest two mutually exclusive pathways of vegetation change, because tundra that gained tall shrubs rarely transitioned to forest. Conversion of tundra to tall shrubs and forest has important and potentially contrasting implications for carbon cycling, surface energy exchange and wildlife habitat in the Arctic.more » « less