skip to main content


Title: Root‐associated fungi not tree density influences stand nitrogen dynamics at the larch forest–tundra ecotone
Abstract

Greater tree density and forest productivity at the tundra–taiga ecotone (TTE) are expected with climate warming, with potential feedbacks to the climate system. Yet, competition for nitrogen (N) may impact TTE dynamics. Greater tree density will likely increase N demand, while reducing N supply through soil shading and slower decomposition rates. We explored whether characteristics of roots and root‐associated fungi important to N acquisition responded to changes in density at the TTE and were related to above‐ground stand productivity and N cycling.

We measured rooting depth, uptake of N forms among soil layers and ectomycorrhizal (EcM) colonization and composition along a natural tree density gradient of monodominant larchLarix cajanderiin northeastern Siberia. We tested relationships between larch root and fungal characteristics, above‐ground productivity and stand‐level N cycling parameters.

Overall, there was preferential uptake of ammonium compared to glycine or nitrate. Nitrogen uptake was greatest in shallow soils of the organic horizon and related to root chemistry, root‐associated fungi and above‐ground N cycling parameters, but the direction of these relationships depended on N form. Uptake of different N forms, rooting depth and EcM colonization and composition were not related to tree density, but fungal composition was correlated with root N chemistry and above‐ground N cycling parameters. In addition to EcM, the abundance of dark septate endophytes and other ascomycetous taxa was positively related to N uptake and above‐ground N cycling parameters.

Synthesis. There was little impact of tree density on root and fungal parameters related to N acquisition suggesting intraspecific larch competition for N was not amplified with increased density. There was, however, a strong impact of root‐associated fungi on N uptake and stand N dynamics regardless of tree density. Together, this suggests an important role of root‐associated fungi on broadscale patterns of N cycling in TTE larch forests independent of changes in tree density expected with climate warming.

 
more » « less
Award ID(s):
1636476 1708309 1708344 2224776
NSF-PAR ID:
10445039
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
110
Issue:
6
ISSN:
0022-0477
Page Range / eLocation ID:
p. 1419-1431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As climate warms, tree density at the taiga–tundra ecotone (TTE) is expected to increase, which may intensify competition for belowground resources in this nitrogen (N)‐limited environment. To determine the impacts of increased tree density on N cycling and productivity, we examined edaphic properties indicative of soil N availability along with aboveground and belowground tree‐level traits and stand characteristics related to carbon (C) and N cycling across a tree density gradient of monodominant larch (Larix cajanderi) at the TTE in far northeastern Siberia. We found no consistent evidence from soil, tree, or stand‐level N cycling characteristics of lower N availability or greater intraspecific competition for N with increased density. Active layer thickness declined, but resin‐sorbed N and soil organic layer thickness did not covary with increased tree density. There was, however, greater allocation belowground to stand‐level coarse and fine roots with increased tree density, an allocation pattern suggestive of limited soil resources. Foliar traits related to C (%C, δ13C, and resorption) were responsive to density indicating the importance of non‐nutrient resources, like light, to foliar stoichiometry. As tree density increased and individual trees had lower productivity, tree‐level N and biomass pools aboveground and belowground declined tracking decreases in N uptake, N resorption, N use efficiency, and allocation to slow cycling tissues like wood. At the stand level, our findings show high N turnover with increased N acquisition, allocation to short‐lived tissues with relatively high N content and reduced N residence time, and greater stand productivity as tree density increased. Yet, these positive relationships were curtailed at the highest tree densities. Our observations of shifts in biomass, C and N allocation, and loss aboveground, along with greater root density with increased tree density, could have strong impacts on C and N cycling and should be represented in models of TTE dynamics and feedbacks to climate.

     
    more » « less
  2. Summary

    As Arctic soils warm, thawed permafrost releases nitrogen (N) that could stimulate plant productivity and thus offset soil carbon losses from tundra ecosystems. Although mycorrhizal fungi could facilitate plant access to permafrost‐derived N, their exploration capacity beyond host plant root systems into deep, cold active layer soils adjacent to the permafrost table is unknown.

    We characterized root‐associated fungi (RAF) that colonized ericoid (ERM) and ectomycorrhizal (ECM) shrub roots and occurred below the maximum rooting depth in permafrost thaw‐front soil in tussock and shrub tundra communities. We explored the relationships between root and thaw front fungal composition and plant uptake of a15N tracer applied at the permafrost boundary.

    We show that ERM and ECM shrubs associate with RAF at the thaw front providing evidence for potential mycelial connectivity between roots and the permafrost boundary. Among shrubs and tundra communities, RAF connectivity to the thaw boundary was ubiquitous. The occurrence of particular RAF in both roots and thaw front soil was positively correlated with15N recovered in shrub biomass

    Taxon‐specific RAF associations could be a mechanism for the vertical redistribution of deep, permafrost‐derived nutrients, which may alleviate N limitation and stimulate productivity in warming tundra.

     
    more » « less
  3. Abstract

    Species interactions may couple the resource dynamics of different primary producers and may enhance productivity by reducing loss from the system. In low‐resource systems, this biotic control may be especially important for maintaining productivity. In drylands, the activities of vascular plants and biological soil crusts can be decoupled in space because biocrusts grow on the soil surface but plant roots are underground, and decoupled in time due to biocrusts activating with smaller precipitation events than plants. Soil fungi are hypothesized to functionally couple the plants and biocrusts by transporting nutrients. We studied whether disrupting fungi between biocrusts and plants reduces nitrogen transfer and retention and decreases primary production as predicted by the fungal loop hypothesis. Additionally, we compared varying precipitation regimes that can drive different timing and depth of biological activities.

    We used field mesocosms in which the potential for fungal connections between biocrusts and roots remained intact or were impeded by mesh. We imposed a precipitation regime of small, frequent or large, infrequent rain events. We used15N to track fungal‐mediated nitrogen (N) transfer. We quantified microbial carbon use efficiency and plant and biocrust production and N content.

    Fungal connections with biocrusts benefitted plant biomass and nutrient retention under favourable (large, infrequent) precipitation regimes but not under stressful (small, frequent) regimes, demonstrating context dependency in the fungal loop. Translocation of a15N tracer from biocrusts to roots was marginally lower when fungal connections were impeded than intact. Under large, infrequent rains, when fungal connections were intact, the C:N of leaves converged towards the C:N of biocrusts, suggesting higher N retention in the plant, and plant above‐ground biomass was greater relative to the fungal connections‐impeded treatment. Carbon use efficiency in both biocrust and rooting zone soil was less C‐limited when connections were intact than impeded, again only in the large, infrequent precipitation regime.

    Synthesis. Although we did not find evidence of a reciprocal transfer of C and N between plants and biocrusts, plant production was benefited by fungal connections with biocrusts under favourable conditions.

     
    more » « less
  4. Background The post-harvest recovery and sustained productivity of Nothofagus pumilio forests in Tierra del Fuego may be affected by the abundance and composition of ectomycorrhizal fungi (EMF). Timber harvesting alters EMF community structure in many managed forests, but the impacts of harvesting can vary with the management strategy. The implementation of variable retention (VR) management can maintain, increase, or decrease the diversity of many species, but the effects of VR on EMF in the forests of southern Patagonia have not been studied, nor has the role of EMF in the regeneration process of these forests. Methods We evaluated the effects of VR management on the EMF community associated with N. pumilio seedlings. We quantified the abundance, composition, and diversity of EMF across aggregate (AR) and dispersed (DR) retention sites within VR managed areas, and compared them to primary forest (PF) unmanaged stands. EMF assemblage and taxonomic identities were determined by ITS-rDNA sequencing of individual root tips sampled from 280 seedlings across three landscape replicates. To better understand seedling performance, we tested the relationships between EMF colonization, EMF taxonomic composition, seedling biomass, and VR treatment. Results The majority of EMF taxa were Basidiomycota belonging to the families Cortinariaceae ( n  = 29), Inocybaceae ( n  = 16), and Thelephoraceae ( n  = 8), which was in agreement with other studies of EMF diversity in Nothofagus forests. EMF richness and colonization was reduced in DR compared to AR and PF. Furthermore, EMF community composition was similar between AR and PF, but differed from the composition in DR. EMF community composition was correlated with seedling biomass and soil moisture. The presence of Peziza depressa was associated with higher seedling biomass and greater soil moisture, while Inocybe fibrillosibrunnea and Cortinarius amoenus were associated with reduced seedling biomass and lower soil moisture. Seedling biomass was more strongly related to retention type than EMF colonization, richness, or composition. Discussion Our results demonstrate reduced EMF attributes and altered composition in VR treatments relative to PF stands, with stronger impacts in DR compared to AR. This suggests that VR has the potential to improve the conservation status of managed stands by supporting native EMF in AR. Our results also demonstrate the complex linkages between retention treatments, fungal community composition, and tree growth at individual and stand scales. 
    more » « less
  5. Abstract

    Transpiration and stomatal conductance in deciduous needleleaf boreal forests of northern Siberia can be highly sensitive to water stress, permafrost thaw, and atmospheric dryness. Additionally, north‐eastern Siberian boreal forests are fire‐driven, and larch (Larixspp.) are the sole tree species. We examined differences in tree water use, stand characteristics, and stomatal responses to environmental drivers between high and low tree density stands that burned 76 years ago in north‐eastern Siberia. Our results provide process‐level insight to climate feedbacks related to boreal forest productivity, water cycles, and permafrost across Arctic regions. The high density stand had shallower permafrost thaw depths and deeper moss layers than the low density stand. Rooting depths and shallow root biomass were similar between stands. Daily transpiration was higher on average in the high‐density stand 0.12 L m−2 day−1(SE: 0.004) compared with the low density stand 0.10 L m−2 day−1(SE: 0.001) throughout the abnormally wet summer of 2016. Transpiration rates tended to be similar at both stands during the dry period in 2017 in both stands of 0.10 L m−2 day−1(SE: 0.002). The timing of precipitation impacted stomatal responses to environmental drivers, and the high density stand was more dependent on antecedent precipitation that occurred over longer periods in the past compared with the low density stand. Post‐fire tree density differences in plant–water relations may lead to different trajectories in plant mortality, water stress, and ecosystem water cycles across Siberian landscapes.

     
    more » « less