skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining superoxide dynamics in irradiated natural waters
Abstract Superoxide () is a reactive oxygen species (ROS) that is primarily produced by the one‐electron transfer of photooxidized chromophoric dissolved organic matter (CDOM) to O2in sunlit natural waters. Here we examine the environmental and chemical parameters (pH, ionic strength, buffer, and halides) that may influence photochemical production rates and decay pathways in natural water. Using the enzyme superoxide dismutase and H2O2measurements, we present results from an irradiated freshwater CDOM source indicating that reductive decay pathways (P/PSOD) dominate with increased pH and NaCl additions and maximal photoproduction rates () increase with carbonate compared to borate buffer. Over 2 h of irradiation, a significant decline in was seen for all samples along with a minor increase in oxidative pathways. These results imply shifts in decay pathways and production rates that seem to vary across natural waters and as a function of irradiation history.  more » « less
Award ID(s):
1924763
PAR ID:
10399437
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
68
Issue:
4
ISSN:
0024-3590
Page Range / eLocation ID:
p. 878-890
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marine microbes produce extracellular reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) as a result of regulated and nonregulated physiological and metabolic reactions. ROS production can be a sink and cryptic recycling flux of dissolved oxygen that may rival other key fluxes in the global oxygen cycle; however, the low abundance and high turnover rate of ROS makes this figure difficult to constrain. One key step in determining the disparity between the gross production of ROS and the net sink of dissolved oxygen lies in understanding the degradation pathways of H2O2in the marine water column. In this study, we use isotope‐labeling techniques to determine the redox fate of H2O2in a range of marine environments off the West Coast of California. We find that H2O2reduction is greater than or equal to H2O2oxidation at most sampled depths, with notable exceptions in some surface and intermediate water depths. The observation that H2O2oxidation can exceed reduction in the dark ocean indicates the presence of an oxidizing decay pathway that is not among the known suite of microbially mediated enzymatic pathways (i.e., catalase and peroxidase), pointing to an abiotic and/or a nonenzymatic decay pathway at intermediate water depths. These results highlight the complexity and heterogeneity of ROS decay pathways in natural waters and their unconstrained regulation of oxygen levels within the ocean. 
    more » « less
  2. In Lake Erie, toxin-forming harmful algal blooms (HABs) occur following high concentrations of hydrogen peroxide (H 2 O 2 ). Correlation between H 2 O 2 concentrations and HABs revealed knowledge gaps on the controls of H 2 O 2 production in Lake Erie. One way H 2 O 2 is produced is upon absorption of sunlight by the chromophoric fraction of dissolved organic matter (CDOM). Rates of this photochemical production of H 2 O 2 may increase in proportion to the apparent quantum yield of H 2 O 2 ( Φ H 2 O 2 ,λ ) from CDOM. However, the Φ H 2 O 2 ,λ for H 2 O 2 production from CDOM remains too poorly constrained to predict the magnitude and range of photochemically produced H 2 O 2 , particularly in freshwaters like Lake Erie. To address this knowledge gap, the Φ H 2 O 2 ,λ was measured approximately biweekly from June–September 2019 in the western basin of Lake Erie along with supporting analyses ( e.g. , CDOM concentration and composition). The average Φ H 2 O 2 ,λ in Lake Erie was within previously reported ranges. However, the Φ H 2 O 2 ,λ varied 5-fold in space and time. The highest Φ H 2 O 2 ,λ was observed in the Maumee River, a tributary of Lake Erie. In nearshore waters of Lake Erie, the Φ H 2 O 2 ,λ decreased about five-fold from June through September. Integration of the controls of photochemical production of H 2 O 2 in Lake Erie show that the variability in rates of photochemical H 2 O 2 production was predominantly due to the Φ H 2 O 2 ,λ . In offshore waters, CDOM concentration also strongly influenced photochemical H 2 O 2 production. Together, the results confirm prior work suggesting that photochemical production of H 2 O 2 contributes but likely cannot account for all the H 2 O 2 associated with HABs in Lake Erie. 
    more » « less
  3. ABSTRACT Bacteria and eukaryotes produce the reactive oxygen species superoxide both within and outside the cell. Although superoxide is typically associated with the detrimental and sometimes fatal effects of oxidative stress, it has also been shown to be involved in a range of essential biochemical processes, including cell signaling, growth, differentiation, and defense. Light‐independent extracellular superoxide production has been shown to be widespread among many marine heterotrophs and phytoplankton, but the extent to which this trait is relevant to marine microbial physiology and ecology throughout the global ocean is unknown. Here, we investigate the dark extracellular superoxide production of five groups of organisms that are geographically widespread and represent some of the most abundant organisms in the global ocean. These includeProchlorococcus,Synechococcus,Pelagibacter,Phaeocystis, andGeminigera. Cell‐normalized net extracellular superoxide production rates ranged seven orders of magnitude, from undetectable to 14,830 amol cell−1h−1, with the cyanobacteriumProchlorococcusbeing the lowest producer and the cryptophyteGeminigerabeing the most prolific producer. Extracellular superoxide production exhibited a strong inverse relationship with cell number, pointing to a potential role in cell signaling. We demonstrate that rapid, cell‐number–dependent changes in the net superoxide production rate bySynechococcusandPelagibacterarose primarily from changes in gross production of extracellular superoxide, not decay. These results expand the relevance of dark extracellular superoxide production to key marine microbes of the global ocean, suggesting that superoxide production in marine waters is regulated by a diverse suite of marine organisms in both dark and sunlit waters. 
    more » « less
  4. Superoxide (O2• –) is produced photochemically in natural waters by chromophoric dissolved organic matter (CDOM) via the reaction of molecular oxygen with photoproduced one-electron reductants (OERs) within CDOM. In the absence of other sinks (metals or organic radicals), O2• – is believed to undergo primarily dismutation to produce hydrogen peroxide (H2O2). However, past studies have implicated the presence of an additional light-dependent sink of O2• – that does not lead to H2O2 production. Here, we provide direct evidence of this sink through O2• – injection experiments. During irradiations, spikes of O2• – are consumed to a greater extent (∼85–30% loss) and are lost much faster (up to ∼0.09 s–1) than spikes introduced post-irradiation (∼50–0% loss and ∼0.03 s–1 rate constant). The magnitude of the loss during irradiation and the rate constant are wavelength-dependent. Analysis of the H2O2 concentration post-spike indicates that this light-dependent sink does not produce H2O2 at low spike concentrations. This work further demonstrates that simply assuming that the O2• – production is twice the H2O2 production is not accurate, as previously believed. 
    more » « less
  5. The distribution of iodine in the surface ocean – of which iodide-iodine is a large destructor of tropospheric ozone (O3) – can be attributed to bothin situ(i.e., biological) andex situ(i.e., mixing) drivers. Currently, uncertainty regarding the rates and mechanisms of iodide (I-) oxidation render it difficult to distinguish the importance ofin situreactions vsex situmixing in driving iodine’s distribution, thus leading to uncertainty in climatological ozone atmospheric models. It has been hypothesized that reactive oxygen species (ROS), such as superoxide (O2•−) or hydrogen peroxide (H2O2), may be needed for I-oxidation to occur at the sea surface, but this has yet to be demonstrated in natural marine waters. To test the role of ROS in iodine redox transformations, shipboard isotope tracer incubations were conducted as part of the Bermuda Atlantic Time Series (BATS) in the Sargasso Sea in September of 2018. Incubation trials evaluated the effects of ROS (O2•−, H2O2) on iodine redox transformations over time and at euphotic and sub-photic depths. Rates of I-oxidation were assessed using a129I-tracer (t1/2~15.7 Myr) added to all incubations, and129I/127I ratios of individual iodine species (I-, IO3-). Our results show a lack of I-oxidation to IO3-within the resolution of our tracer approach – i.e., <2.99 nM/day, or <1091.4 nM/yr. In addition, we present new ROS data from BATS and compare our iodine speciation profiles to that from two previous studies conducted at BATS, which demonstrate long-term iodine stability. These results indicate thatex situprocesses, such as vertical mixing, may play an important role in broader iodine species’ distribution in this and similar regions. 
    more » « less