skip to main content

This content will become publicly available on January 1, 2024

Title: Effect of Diabetes on Tendon Structure and Function: Not Limited to Collagen Crosslinking
Diabetes mellitus (DM) is associated with musculoskeletal complications—including tendon dysfunction and injury. Patients with DM show altered foot and ankle mechanics that have been attributed to tendon dysfunction as well as impaired recovery post-tendon injury. Despite the problem of DM-related tendon complications, treatment guidelines specific to this population of individuals are lacking. DM impairs tendon structure, function, and healing capacity in tendons throughout the body, but the Achilles tendon is of particular concern and most studied in the diabetic foot. At macroscopic levels, asymptomatic, diabetic Achilles tendons may show morphological abnormalities such as thickening, collagen disorganization, and/or calcific changes at the tendon enthesis. At smaller length scales, DM affects collagen sliding and discrete plasticity due to glycation of collagen. However, how these alterations translate to mechanical deficits observed at larger length scales is an area of continued investigation. In addition to dysfunction of the extracellular matrix, tendon cells such as tenocytes and tendon stem/progenitor cells show significant abnormalities in proliferation, apoptosis, and remodeling capacity in the presence of hyperglycemia and advanced glycation end-products, thus contributing to the disruption of tendon homeostasis and healing. Improving our understanding of the effects of DM on tendons—from molecular pathways to patients—will progress toward targeted more » therapies in this group at high risk of foot and ankle morbidity. « less
Authors:
; ;
Award ID(s):
2037125
Publication Date:
NSF-PAR ID:
10399451
Journal Name:
Journal of Diabetes Science and Technology
Volume:
17
Issue:
1
Page Range or eLocation-ID:
89 to 98
ISSN:
1932-2968
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Diabetes is associated with impaired tendon homeostasis and subsequent tendon dysfunction, but the mechanisms underlying these associations is unclear. Advanced glycation end-products (AGEs) accumulate with diabetes and have been suggested to alter tendon function. In vivo imaging in humans has suggested collagen disorganization is more frequent in individuals with diabetes, which could also impair tendon mechanical function. The purpose of this study was to examine relationships between tendon tensile mechanics in human Achilles tendon with accumulation of advanced glycation end-products and collagen disorganization. Achilles tendon specimens (n = 16) were collected from individuals undergoing lower extremity amputation or from autopsy. Tendons were tensile tested with simultaneous quantitative polarized light imaging to assess collagen organization, after which AGEs content was assessed using a fluorescence assay. Moderate to strong relationships were observed between measures of collagen organization and tendon tensile mechanics (range of correlation coefficients: 0.570–0.727), whereas no statistically significant relationships were observed between AGEs content and mechanical parameters (range of correlation coefficients: 0.020–0.210). Results suggest that the relationship between AGEs content and tendon tensile mechanics may be masked by multifactorial collagen disorganization at larger length scales (i.e., the fascicle level).
  2. Abstract

    The extracellular matrix (ECM) is the primary biomechanical environment that interacts with tendon cells (tenocytes). Stresses applied via muscle contraction during skeletal movement transfer across structural hierarchies to the tenocyte nucleus in native uninjured tendons. Alterations to ECM structural and mechanical properties due to mechanical loading and tissue healing may affect this multiscale strain transfer and stress transmission through the ECM. This study explores the interface between dynamic loading and tendon healing across multiple length scales using living tendon explants. Results show that macroscale mechanical and structural properties are inferior following high magnitude dynamic loading (fatigue) in uninjured living tendon and that these effects propagate to the microscale. Although similar macroscale mechanical effects of dynamic loading are present in healing tendon compared to uninjured tendon, the microscale properties differed greatly during early healing. Regression analysis identified several variables (collagen and nuclear disorganization, cellularity, and F-actin) that directly predict nuclear deformation under loading. Finite element modeling predicted deficits in ECM stress transmission following fatigue loading and during healing. Together, this work identifies the multiscale response of tendon to dynamic loading and healing, and provides new insight into microenvironmental features that tenocytes may experience following injury and after cell delivery therapies.

  3. Abstract Skeletal muscle is a tissue that is directly involved in the progression and persistence of type 2 diabetes (T2D), a disease that is becoming increasingly common. Gaining better insight into the mechanisms that are affecting skeletal muscle dysfunction in the context of T2D has the potential to lead to novel treatments for a large number of patients. Through its ability to emulate skeletal muscle architecture while also incorporating aspects of disease, tissue-engineered skeletal muscle (TE-SkM) has the potential to provide a means for rapid high-throughput discovery of therapies to treat skeletal muscle dysfunction, to include that which occurs with T2D. Muscle precursor cells isolated from lean or obese male Zucker diabetic fatty rats were used to generate TE-SkM constructs. Some constructs were treated with adipogenic induction media to accentuate the presence of adipocytes that is a characteristic feature of T2D skeletal muscle. The maturity (compaction and creatine kinase activity), mechanical integrity (Young's modulus), organization (myotube orientation), and metabolic capacity (insulin-stimulated glucose uptake) were all reduced by diabetes. Treating constructs with adipogenic induction media increased the quantity of lipid within the diabetic TE-SkM constructs, and caused changes in construct compaction, cell orientation, and insulin-stimulated glucose uptake in both lean andmore »diabetic samples. Collectively, the findings herein suggest that the recapitulation of structural and metabolic aspects of T2D can be accomplished by engineering skeletal muscle in vitro. Impact Statement The tissue engineering of skeletal muscle to model disease and injury has great promise to provide a tool to develop and/or improve therapeutic approaches for improved health care. A tissue-engineered skeletal muscle model of one of the most common and debilitating diseases, type 2 diabetes, has been developed in vitro as evidenced by the structural and metabolic alterations that are consistent with the disease phenotype in vivo.« less
  4. Abstract

    Degradation of extracellular matrix (ECM) during tendinopathy is, in part, mediated by the collagenolytic cathepsin K (catK) and cathepsin L (catL), with a temporal component to their activity. The objective of this study was to determine how catK and catL act in concert or in conflict to degrade collagen and tendon ECM during tissue degeneration. To do so, type I collagen gels or ECM extracted from apolipoprotein E deficient mouse Achilles tendons were incubated with catK and catL either concurrently or sequentially, incubating catK first, then catL after a delayed time period. Sequential incubation of catK then catL caused greater degradation of substrates over concurrent incubation, and of either cathepsin alone. Zymography showed there were reduced amounts of active enzymes when co-incubated, indicating that cannibalism, or protease-on-protease degradation between catK and catL was occurring, but incubation with ECM could distract from these interactions. CatK alone was sufficient to quickly degrade tendon ECM, but catL was not, requiring the presence of catK for degradation. Together, these data identify cooperative and conflicting actions of cathepsin mediated collagen matrix degradation by considering interactive effects of multiple proteases during tissue degeneration.

  5. Introduction: Myocardial fibrosis and dysfunction is one of the major cardiac complications of long-term diabetes. Prolonged hyperglycemia is known to induce myocardial dysfunction often leading up to heart failure. Hypothesis: The objective of this study was to investigate the cardioprotective effect of glycyrrhizin (GLC) on myocardial damage in engineered in-vitro human cardiac tissues. Engineered 3D tissue chips present an ideal microenvironment via therapeutically relevant interfaces to study molecular- and cellular-level events and mimic human-specific disease states, and identify new therapeutic targets in vitro. Methods: AC16 human cardiomyocyte cells were used to 3D bioprint cardiac tissue chips based on prior published work. In our study, the 3D bioprinted cardiac tissue chips (CTC) were cultured using normo- (5mM) and hyper-glycemic (25mM) conditions for up to 48 hrs. For the GLC treatment group, a subset of CTC cultured using hyperglycemic conditions were treated with 50 mM of GLC for 24 hours. Results: CTC cultured under hyperglycemic conditions demonstrated altered levels of connexin-43 (CX43) and Troponin-I implying cardiomyocyte injury. Exposure to hyperglycemia revealed changes in epigenetic markers: histone methylation marker (H3K9me)-1, Sirtuin-1, and Histone Deacetylase (HDAC)-2 as well as in inflammatory and stress related mediators such as heat shock protein (HSP)-60, receptor for advancedmore »glycation end products (RAGE), toll like receptor (TLR)-4, high mobility group box (HMGB)-1 and CXC chemokine receptor (CXCR)-4. CTC exposed to 25mM glucose for 24 hours resulted in the downregulation of HSP60 and Sirtuin-1. Prolonged exposure to hyperglycemia led to decrease in the expression of CX43 and CXCR4; thereby adversely affecting cardiomyocyte function. Upregulated expression of DNA-binding nuclear protein HMGB1 along with changes in H3K9me1 indicated long-term hyperglycemia-induced damage to cardiomyocytes. GLC treated CTC exhibited a decrease in the expression of RAGE, TLR4 and also demonstrated altered expression of CX43, CXCR4, and troponin I. Conclusions: This study suggests that GLC possesses cardioprotective effects in human cardiomyocytes exposed to prolonged hyperglycemia.« less