skip to main content


Title: Retrieving C and O Abundance of HR 8799 c by Combining High- and Low-resolution Data
Abstract

The formation and evolution pathway for the directly imaged multiplanetary system HR 8799 remains mysterious. Accurate constraints on the chemical composition of the planetary atmosphere(s) are key to solving the mystery. We perform a detailed atmospheric retrieval on HR 8799 c to infer the chemical abundances and abundance ratios using a combination of photometric data along with low- and high-resolution spectroscopic data (R∼ 20–35,000). We specifically retrieve [C/H], [O/H], and C/O and find them to be0.550.39+0.36,0.470.32+0.31, and0.670.15+0.12at 68% confidence. The superstellar C and O abundances, yet a stellar C/O ratio, reveal a potential formation pathway for HR 8799 c. Planet c, and likely the other gas giant planets in the system, formed early on (likely within ∼1 Myr), followed by further atmospheric enrichment in C and O through the accretion of solids beyond the CO ice line. The enrichment either preceded or took place during the early phase of the inward migration to the current planet locations.

 
more » « less
Award ID(s):
2143400
NSF-PAR ID:
10485062
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
165
Issue:
1
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 4
Size(s):
["Article No. 4"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using the Keck Planet Imager and Characterizer, we obtained high-resolution (R∼ 35,000)K-band spectra of the four planets orbiting HR 8799. We clearly detected H2O and CO in the atmospheres of HR 8799 c, d, and e, and tentatively detected a combination of CO and H2O in b. These are the most challenging directly imaged exoplanets that have been observed at high spectral resolution to date when considering both their angular separations and flux ratios. We developed a forward-modeling framework that allows us to jointly fit the spectra of the planets and the diffracted starlight simultaneously in a likelihood-based approach and obtained posterior probabilities on their effective temperatures, surface gravities, radial velocities, and spins. We measuredvsin(i)values of10.12.7+2.8kms1for HR 8799 d and15.02.6+2.3kms1for HR 8799 e, and placed an upper limit of <14 km s−1of HR 8799 c. Under two different assumptions of their obliquities, we found tentative evidence that rotation velocity is anticorrelated with companion mass, which could indicate that magnetic braking with a circumplanetary disk at early times is less efficient at spinning down lower-mass planets.

     
    more » « less
  2. Abstract

    HR 8799 is a young A5/F0 star hosting four directly imaged giant planets at wide separations (∼16–78 au), which are undergoing orbital motion and have been continuously monitored with adaptive optics imaging since their discovery over a decade ago. We present a dynamical mass of HR 8799 using 130 epochs of relative astrometry of its planets, which include both published measurements and new medium-band 3.1μm observations that we acquired with NIRC2 at Keck Observatory. For the purpose of measuring the host-star mass, each orbiting planet is treated as a massless particle and is fit with a Keplerian orbit using Markov chain Monte Carlo. We then use a Bayesian framework to combine each independent total mass measurement into a cumulative dynamical mass using all four planets. The dynamical mass of HR 8799 is1.470.17+0.12Massuming a uniform stellar mass prior, or1.460.15+0.11Mwith a weakly informative prior based on spectroscopy. There is a strong covariance between the planets’ eccentricities and the total system mass; when the constraint is limited to low-eccentricity solutions ofe< 0.1, which are motivated by dynamical stability, our mass measurement improves to1.430.07+0.06M. Our dynamical mass and other fundamental measured parameters of HR 8799 together with Modules for Experiments in Stellar Astrophysics Isochrones and Stellar Tracks grids yields a bulk metallicity most consistent with [Fe/H] ∼ −0.25–0.00 dex and an age of 10–23 Myr for the system. This implies hot-start masses of 2.7–4.9MJupfor HR 8799 b and 4.1–7.0MJupfor HR 8799 c, d, and e, assuming they formed at the same time as the host star.

     
    more » « less
  3. Abstract

    We present high-resolutionK-band emission spectra of the quintessential hot Jupiter HD 189733 b from the Keck Planet Imager and Characterizer. Using a Bayesian retrieval framework, we fit the dayside pressure–temperature profile, orbital kinematics, mass-mixing ratios of H2O, CO, CH4, NH3, HCN, and H2S, and the13CO/12CO ratio. We measure mass fractions oflogH2O=2.00.4+0.4andlogCO=2.20.5+0.5, and place upper limits on the remaining species. Notably, we find logCH4< −4.5 at 99% confidence, despite its anticipated presence at the equilibrium temperature of HD 189733 b assuming local thermal equilibrium. We make a tentative (∼3σ) detection of13CO, and the retrieved posteriors suggest a12C/13C ratio similar to or substantially less than the local interstellar value. The possible13C enrichment would be consistent with accretion of fractionated material in ices or in the protoplanetary disk midplane. The retrieved abundances correspond to a substantially substellar atmospheric C/O = 0.3 ± 0.1, while the carbon and oxygen abundances are stellar to slightly superstellar, consistent with core-accretion models which predict an inverse correlation between C/O and metallicity. The specific combination of low C/O and high metallicity suggests significant accretion of solid material may have occurred late in the formation process of HD 189733 b.

     
    more » « less
  4. Abstract

    We present Keck Planet Imager and Characterizer (KPIC) high-resolution (R∼35,000)K-band thermal emission spectroscopy of the ultrahot Jupiter WASP-33b. The use of KPIC’s single-mode fibers greatly improves both blaze and line-spread stabilities relative to slit spectrographs, enhancing the cross-correlation detection strength. We retrieve the dayside emission spectrum with a nested-sampling pipeline, which fits for orbital parameters, the atmospheric pressure–temperature profile, and the molecular abundances. We strongly detect the thermally inverted dayside and measure mass-mixing ratios for CO (logCOMMR=1.10.6+0.4), H2O (logH2OMMR=4.10.9+0.7), and OH (logOHMMR=2.11.1+0.5), suggesting near-complete dayside photodissociation of H2O. The retrieved abundances suggest a carbon- and possibly metal-enriched atmosphere, with a gas-phase C/O ratio of0.80.2+0.1, consistent with the accretion of high-metallicity gas near the CO2snow line and post-disk migration or with accretion between the soot and H2O snow lines. We also find tentative evidence for12CO/13CO ∼ 50, consistent with values expected in protoplanetary disks, as well as tentative evidence for a metal-enriched atmosphere (2–15 × solar). These observations demonstrate KPIC’s ability to characterize close-in planets and the utility of KPIC’s improved instrumental stability for cross-correlation techniques.

     
    more » « less
  5. Abstract

    AF Lep A+b is a remarkable planetary system hosting a gas-giant planet that has the lowest dynamical mass among directly imaged exoplanets. We present an in-depth analysis of the atmospheric composition of the star and planet to probe the planet’s formation pathway. Based on new high-resolution spectroscopy of AF Lep A, we measure a uniform set of stellar parameters and elemental abundances (e.g., [Fe/H] = −0.27 ± 0.31 dex). The planet’s dynamical mass (2.80.5+0.6MJup) and orbit are also refined using published radial velocities, relative astrometry, and absolute astrometry. We usepetitRADTRANSto perform chemically consistent atmospheric retrievals for AF Lep b. The radiative–convective equilibrium temperature profiles are incorporated as parameterized priors on the planet’s thermal structure, leading to a robust characterization for cloudy self-luminous atmospheres. This novel approach is enabled by constraining the temperature–pressure profiles via the temperature gradient(dlnT/dlnP), a departure from previous studies that solely modeled the temperature. Through multiple retrievals performed on different portions of the 0.9–4.2μm spectrophotometry, along with different priors on the planet’s mass and radius, we infer that AF Lep b likely possesses a metal-enriched atmosphere ([Fe/H] > 1.0 dex). AF Lep b’s potential metal enrichment may be due to planetesimal accretion, giant impacts, and/or core erosion. The first process coincides with the debris disk in the system, which could be dynamically excited by AF Lep b and lead to planetesimal bombardment. Our analysis also determinesTeff≈ 800 K,log(g)3.7dex, and the presence of silicate clouds and disequilibrium chemistry in the atmosphere. Straddling the L/T transition, AF Lep b is thus far the coldest exoplanet with suggested evidence of silicate clouds.

     
    more » « less