Abstract Extremely large telescopes (ELTs) present an unparalleled opportunity to study the magnetism, atmospheric dynamics, and chemistry of very-low-mass (VLM) stars, brown dwarfs, and exoplanets. Instruments such as the Giant Magellan Telescope–Consortium Large Earth Finder (GMT/GCLEF), the Thirty Meter Telescope’s Multi-Objective Diffraction-limited High-Resolution Infrared Spectrograph (TMT/MODHIS), and the European Southern Observatory’s Mid-Infrared ELT Imager and Spectrograph (ELT/METIS) provide the spectral resolution and signal-to-noise ratio necessary to Doppler image ultracool targets’ surfaces based on temporal spectral variations due to surface inhomogeneities. Using our publicly available code,Imber, developed and validated in Plummer & Wang, we evaluate these instruments’ abilities to discern magnetic starspots and cloud systems on a VLM star (TRAPPIST-1), two L/T transition ultracool dwarfs (VHS J1256−1257 b and SIMP J0136+0933), and three exoplanets (Beta Pic b and HR 8799 d and e). We find that TMT/MODHIS and ELT/METIS are suitable for Doppler imaging the ultracool dwarfs and Beta Pic b over a single rotation. Uncertainties for longitude and radius are typically ≲10°, and latitude uncertainties range from ∼10° to 30°. TRAPPIST-1's edge-on inclination and low provide a challenge for all three instruments, while GMT/GCLEF and the HR 8799 planets may require observations over multiple rotations. We compare the spectroscopic technique, photometry-only inference, and the combination of the two. We find combining spectroscopic and photometric observations can lead to improved Bayesian inference of surface inhomogeneities and offers insight into whether ultracool atmospheres are dominated by spotted or banded features.
more »
« less
A Unified Spectroscopic and Photometric Model to Infer Surface Inhomogeneity: Application to Luhman 16B
Abstract Extremely large telescopes (ELTs) provide an opportunity to observe surface inhomogeneities for ultracool objects including M dwarfs, brown dwarfs (BDs), and gas giant planets via Doppler imaging and spectrophotometry techniques. These inhomogeneities can be caused by star spots, clouds, and vortices. Star spots and associated stellar flares play a significant role in habitability, either stifling life or catalyzing abiogenesis depending on the emission frequency, magnitude, and orientation. Clouds and vortices may be the source of spectral and photometric variability observed at the L/T transition of BDs and are expected in gas giant exoplanets. We develop a versatile analytical framework to model and infer surface inhomogeneities that can be applied to both spectroscopic and photometric data. This model is validated against a slew of numerical simulations. Using archival spectroscopic and photometric data, we infer starspot parameters (location, size, and contrast) and generate global surface maps for Luhman 16B (an early T dwarf and one of our solar system’s nearest neighbors at a distance of ≈2 pc). We confirm previous findings that Luhman 16B’s atmosphere is inhomogeneous with time-varying features. In addition, we provide tentative evidence of longer timescale atmospheric structures such as dark equatorial and bright midlatitude to polar spots. These findings are discussed in the context of atmospheric circulation and dynamics for ultracool dwarfs. Our analytical model will be valuable in assessing the feasibility of using ELTs to study surface inhomogeneities of gas giant exoplanets and other ultracool objects.
more »
« less
- Award ID(s):
- 2143400
- PAR ID:
- 10399532
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 933
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 163
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the discovery of 118 new ultracool dwarf candidates, discovered using a new machine-learning tool, namedSMDET, applied to time-series images from the Wide-field Infrared Survey Explorer. We gathered photometric and astrometric data to estimate each candidate’s spectral type, distance, and tangential velocity. This sample has a photometrically estimated spectral class distribution of 28 M dwarfs, 64 L dwarfs, and 18 T dwarfs. We also identify a T-subdwarf candidate, two extreme T-subdwarf candidates, and two candidate young ultracool dwarfs. Five objects did not have enough photometric data for any estimations to be made. To validate our estimated spectral types, spectra were collected for two objects, yielding confirmed spectral types of T5 (estimated T5) and T3 (estimated T4). Demonstrating the effectiveness of machine-learning tools as a new large-scale discovery technique.more » « less
-
Abstract We present the projected rotational velocity and molecular abundances for HD 33632 Ab obtained via Keck Planet Imager and Characterizer (KPIC) high-resolution spectroscopy. HD 33632 Ab is a nearby benchmark brown dwarf companion at a separation of ∼20 au that straddles the L–T transition. Using a forward-modeling framework with on-axis host star spectra, which provides self-consistent substellar atmospheric and retrieval models for HD 33632 Ab, we derive a projected rotational velocity of 53 ± 3 km s−1and carbon monoxide and water mass fractions of logCO = −2.3 ± 0.3 and logH2O = −2.7 ± 0.2, respectively. The inferred carbon-to-oxygen ratio (C/O = 0.58 ± 0.14), molecular abundances, and metallicity ([C/H] = 0.0 ± 0.2 dex) of HD 33632 Ab are consistent with its host star. Although detectable methane opacities are expected in L–T transition objects, we did not recover methane in our KPIC spectra, partly due to the highvsiniand to disequilibrium chemistry at the pressures to which we are sensitive. We parameterize the spin as the ratio of rotation to the breakup velocity, and compare HD 33632 Ab to a compilation of >200 very low-mass objects (M≲ 0.1M⊙) that have spin measurements in the literature. There appears to be no clear trend for the isolated low-mass field objects versus mass, but a tentative trend is identified for low-mass companions and directly imaged exoplanets, similar to previous findings. A larger sample of close-in gas giant exoplanets and brown dwarfs will critically examine our understanding of their formation and evolution through rotation and chemical abundance measurements.more » « less
-
Abstract We present design considerations for the Transiting Exosatellites, Moons, and Planets in Orion (TEMPO) Survey with the Nancy Grace Roman Space Telescope. This proposed 30 days survey is designed to detect a population of transiting extrasolar satellites, moons, and planets in the Orion Nebula Cluster (ONC). The young (1–3 Myr), densely populated ONC harbors about a thousand bright brown dwarfs (BDs) and free-floating planetary-mass objects (FFPs). TEMPO offers sufficient photometric precision to monitor FFPs with M >1 M J for transiting satellites. The survey is also capable of detecting FFPs down to sub-Saturn masses via direct imaging, although follow-up confirmation will be challenging. TEMPO yield estimates include 14 (3–22) exomoons/satellites transiting FFPs and 54 (8–100) satellites transiting BDs. Of this population, approximately 50% of companions would be “super-Titans” (Titan to Earth mass). Yield estimates also include approximately 150 exoplanets transiting young Orion stars, of which >50% will orbit mid-to-late M dwarfs. TEMPO would provide the first census demographics of small exosatellites orbiting FFPs and BDs, while simultaneously offering insights into exoplanet evolution at the earliest stages. This detected exosatellite population is likely to be markedly different from the current census of exoplanets with similar masses (e.g., Earth-mass exosatellites that still possess H/He envelopes). Although our yield estimates are highly uncertain, as there are no known exoplanets or exomoons analogous to these satellites, the TEMPO survey would test the prevailing theories of exosatellite formation and evolution, which limit the certainty surrounding detection yields.more » « less
-
ABSTRACT This work combines spectroscopic and photometric data of the polluted white dwarf WD 0141−675, which has a now retracted astrometric super-Jupiter candidate, and investigates the most promising ways to confirm Gaia astrometric planetary candidates and obtain follow-up data. Obtaining precise radial velocity measurements for white dwarfs is challenging due to their intrinsic faint magnitudes, lack of spectral absorption lines, and broad spectral features. However, dedicated radial velocity campaigns are capable of confirming close-in giant exoplanets (a few MJup) around polluted white dwarfs, where additional metal lines aid radial velocity measurements. Infrared emission from these giant exoplanets is shown to be detectable with JWST Mid-Infrared Instrument (MIRI) and will provide constraints on the formation of the planet. Using the initial Gaia astrometric solution for WD 0141−675 as a case study, if there were a planet with a 33.65 d period or less with a nearly edge-on orbit, (1) ground-based radial velocity monitoring limits the mass to <15.4 MJup, and (2) space-based infrared photometry shows a lack of infrared excess and in a cloud-free planetary cooling scenario, a substellar companion would have to be <16 MJup and be older than 3.7 Gyr. These results demonstrate how radial velocities and infrared photometry can probe the mass of the objects producing some of the astrometric signals, and rule out parts of the brown dwarf and planet mass parameter space. Therefore, combining astrometric data with spectroscopic and photometric data is crucial to both confirm and characterize astrometric planet candidates around white dwarfs.more » « less
An official website of the United States government

