skip to main content


Title: Reconstructing cosmological initial conditions from late-time structure with convolutional neural networks
ABSTRACT

We present a method to reconstruct the initial linear-regime matter density field from the late-time non-linearly evolved density field in which we channel the output of standard first-order reconstruction to a convolutional neural network (CNN). Our method shows dramatic improvement over the reconstruction of either component alone. We show why CNNs are not well-suited for reconstructing the initial density directly from the late-time density: CNNs are local models, but the relationship between initial and late-time density is not local. Our method leverages standard reconstruction as a preprocessing step, which inverts bulk gravitational flows sourced over very large scales, transforming the residual reconstruction problem from long-range to local and making it ideally suited for a CNN. We develop additional techniques to account for redshift distortions, which warp the density fields measured by galaxy surveys. Our method improves the range of scales of high-fidelity reconstruction by a factor of 2 in wavenumber above standard reconstruction, corresponding to a factor of 8 increase in the number of well-reconstructed modes. In addition, our method almost completely eliminates the anisotropy caused by redshift distortions. As galaxy surveys continue to map the Universe in increasingly greater detail, our results demonstrate the opportunity offered by CNNs to untangle the non-linear clustering at intermediate scales more accurately than ever before.

 
more » « less
Award ID(s):
2019786
NSF-PAR ID:
10399637
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
520
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 6256-6267
Size(s):
["p. 6256-6267"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present a cosmic density field reconstruction method that augments the traditional reconstruction algorithms with a convolutional neural network (CNN). Following previous work, the key component of our method is to use the reconstructed density field as the input to the neural network. We extend this previous work by exploring how the performance of these reconstruction ideas depends on the input reconstruction algorithm, the reconstruction parameters, and the shot noise of the density field, as well as the robustness of the method. We build an eight-layer CNN and train the network with reconstructed density fields computed from the Quijote suite of simulations. The reconstructed density fields are generated by both the standard algorithm and a new iterative algorithm. In real space at z = 0, we find that the reconstructed field is 90 per cent correlated with the true initial density out to $k\sim 0.5 \, \mathrm{ h}\, \rm {Mpc}^{-1}$, a significant improvement over $k\sim 0.2 \, \mathrm{ h}\, \rm {Mpc}^{-1}$ achieved by the input reconstruction algorithms. We find similar improvements in redshift space, including an improved removal of redshift space distortions at small scales. We also find that the method is robust across changes in cosmology. Additionally, the CNN removes much of the variance from the choice of different reconstruction algorithms and reconstruction parameters. However, the effectiveness decreases with increasing shot noise, suggesting that such an approach is best suited to high density samples. This work highlights the additional information in the density field beyond linear scales as well as the power of complementing traditional analysis approaches with machine learning techniques.

     
    more » « less
  2. Abstract

    There is untapped cosmological information in galaxy redshift surveys in the nonlinear regime. In this work, we use theAemulussuite of cosmologicalN-body simulations to construct Gaussian process emulators of galaxy clustering statistics at small scales (0.1–50h−1Mpc) in order to constrain cosmological and galaxy bias parameters. In addition to standard statistics—the projected correlation functionwp(rp), the redshift-space monopole of the correlation functionξ0(s), and the quadrupoleξ2(s)—we emulate statistics that include information about the local environment, namely the underdensity probability functionPU(s) and the density-marked correlation functionM(s). This extends the model ofAemulusIII for redshift-space distortions by including new statistics sensitive to galaxy assembly bias. In recovery tests, we find that the beyond-standard statistics significantly increase the constraining power on cosmological parameters of interest: includingPU(s) andM(s) improves the precision of our constraints on Ωmby 27%,σ8by 19%, and the growth of structure parameter,fσ8, by 12% compared to standard statistics. We additionally find that scales below ∼6h−1Mpc contain as much information as larger scales. The density-sensitive statistics also contribute to constraining halo occupation distribution parameters and a flexible environment-dependent assembly bias model, which is important for extracting the small-scale cosmological information as well as understanding the galaxy–halo connection. This analysis demonstrates the potential of emulating beyond-standard clustering statistics at small scales to constrain the growth of structure as a test of cosmic acceleration.

     
    more » « less
  3. Abstract We present spectroscopic confirmation of candidate strong gravitational lenses using the Keck Observatory and Very Large Telescope as part of our ASTRO 3D Galaxy Evolution with Lenses ( AGEL ) survey. We confirm that (1) search methods using convolutional neural networks (CNNs) with visual inspection successfully identify strong gravitational lenses and (2) the lenses are at higher redshifts relative to existing surveys due to the combination of deeper and higher-resolution imaging from DECam and spectroscopy spanning optical to near-infrared wavelengths. We measure 104 redshifts in 77 systems selected from a catalog in the DES and DECaLS imaging fields ( r ≤ 22 mag). Combining our results with published redshifts, we present redshifts for 68 lenses and establish that CNN-based searches are highly effective for use in future imaging surveys with a success rate of at least 88% (defined as 68/77). We report 53 strong lenses with spectroscopic redshifts for both the deflector and source ( z src > z defl ), and 15 lenses with a spectroscopic redshift for either the deflector ( z defl > 0.21) or source ( z src ≥ 1.34). For the 68 lenses, the deflectors and sources have average redshifts and standard deviations of 0.58 ± 0.14 and 1.92 ± 0.59 respectively, and corresponding redshift ranges of z defl = 0.21–0.89 and z src = 0.88–3.55. The AGEL systems include 41 deflectors at z defl ≥ 0.5 that are ideal for follow-up studies to track how mass density profiles evolve with redshift. Our goal with AGEL is to spectroscopically confirm ∼100 strong gravitational lenses that can be observed from both hemispheres throughout the year. The AGEL survey is a resource for refining automated all-sky searches and addressing a range of questions in astrophysics and cosmology. 
    more » « less
  4. ABSTRACT

    We investigate the accuracy requirements for field-level inference of cluster and void masses using data from galaxy surveys. We introduce a two-step framework that takes advantage of the fact that cluster masses are determined by flows on larger scales than the clusters themselves. First, we determine the integration accuracy required to perform field-level inference of cosmic initial conditions on these large scales by fitting to late-time galaxy counts using the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm. A 20-step COLA integrator is able to accurately describe the density field surrounding the most massive clusters in the local super-volume ($\lt 135\, {h^{-1}\mathrm{\, Mpc}}$), but does not by itself lead to converged virial mass estimates. Therefore, we carry out ‘posterior resimulations’, using full N-body dynamics while sampling from the inferred initial conditions, and thereby obtain estimates of masses for nearby massive clusters. We show that these are in broad agreement with existing estimates, and find that mass functions in the local super-volume are compatible with ΛCDM.

     
    more » « less
  5. null (Ed.)
    Weak lensing measurements suffer from well-known shear estimation biases, which can be partially corrected for with the use of image simulations. In this work we present an analysis of simulated images that mimic Hubble Space Telescope/Advance Camera for Surveys observations of high-redshift galaxy clusters, including cluster specific issues such as non-weak shear and increased blending. Our synthetic galaxies have been generated to have similar observed properties as the background-selected source samples studied in the real images. First, we used simulations with galaxies placed on a grid to determine a revised signal-to-noise-dependent ( S / N KSB ) correction for multiplicative shear measurement bias, and to quantify the sensitivity of our KSB+ bias calibration to mismatches of galaxy or PSF properties between the real data and the simulations. Next, we studied the impact of increased blending and light contamination from cluster and foreground galaxies, finding it to be negligible for high-redshift ( z  >  0.7) clusters, whereas shear measurements can be affected at the ∼1% level for lower redshift clusters given their brighter member galaxies. Finally, we studied the impact of fainter neighbours and selection bias using a set of simulated images that mimic the positions and magnitudes of galaxies in Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) data, thereby including realistic clustering. While the initial SExtractor object detection causes a multiplicative shear selection bias of −0.028 ± 0.002, this is reduced to −0.016 ± 0.002 by further cuts applied in our pipeline. Given the limited depth of the CANDELS data, we compared our CANDELS-based estimate for the impact of faint neighbours on the multiplicative shear measurement bias to a grid-based analysis, to which we added clustered galaxies to even fainter magnitudes based on Hubble Ultra Deep Field data, yielding a refined estimate of ∼ − 0.013. Our sensitivity analysis suggests that our pipeline is calibrated to an accuracy of ∼0.015 once all corrections are applied, which is fully sufficient for current and near-future weak lensing studies of high-redshift clusters. As an application, we used it for a refined analysis of three highly relaxed clusters from the South Pole Telescope Sunyaev-Zeldovich survey, where we now included measurements down to the cluster core ( r  >  200 kpc) as enabled by our work. Compared to previously employed scales ( r  >  500 kpc), this tightens the cluster mass constraints by a factor 1.38 on average. 
    more » « less