skip to main content


Title: Task-Guided Inverse Reinforcement Learning under Partial Information
We study the problem of inverse reinforcement learning (IRL), where the learning agent recovers a reward function using expert demonstrations. Most of the existing IRL techniques make the often unrealistic assumption that the agent has access to full information about the environment. We remove this assumption by developing an algorithm for IRL in partially observable Markov decision processes (POMDPs). The algorithm addresses several limitations of existing techniques that do not take the information asymmetry between the expert and the learner into account. First, it adopts causal entropy as the measure of the likelihood of the expert demonstrations as opposed to entropy in most existing IRL techniques, and avoids a common source of algorithmic complexity. Second, it incorporates task specifications expressed in temporal logic into IRL. Such specifications may be interpreted as side information available to the learner a priori in addition to the demonstrations and may reduce the information asymmetry. Nevertheless, the resulting formulation is still nonconvex due to the intrinsic nonconvexity of the so-called forward problem, i.e., computing an optimal policy given a reward function, in POMDPs. We address this nonconvexity through sequential convex programming and introduce several extensions to solve the forward problem in a scalable manner.This scalability allows computing policies that incorporate memory at the expense of added computational cost yet also outperform memoryless policies. We demonstrate that, even with severely limited data, the algorithm learns reward functions and policies that satisfy the task and induce a similar behavior to the expert by leveraging the side information and incorporating memory into the policy.  more » « less
Award ID(s):
1652113
NSF-PAR ID:
10399774
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the International Conference on Automated Planning and Scheduling
Volume:
32
ISSN:
2334-0835
Page Range / eLocation ID:
53 to 61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a framework to learn the reward function underlying high-level sequential tasks from demonstrations. The purpose of reward learning, in the context of learning from demonstration (LfD), is to generate policies that mimic the demonstrator’s policies, thereby enabling imitation learning. We focus on a human-robot interaction(HRI) domain where the goal is to learn and model structured interactions between a human and a robot. Such interactions can be modeled as a partially observable Markov decision process (POMDP) where the partial observability is caused by uncertainties associated with the ways humans respond to different stimuli. The key challenge in finding a good policy in such a POMDP is determining the reward function that was observed by the demonstrator. Existing inverse reinforcement learning(IRL) methods for POMDPs are computationally very expensive and the problem is not well understood. In comparison, IRL algorithms for Markov decision process (MDP) are well defined and computationally efficient. We propose an approach of reward function learning for high-level sequential tasks from human demonstrations where the core idea is to reduce the underlying POMDP to an MDP and apply any efficient MDP-IRL algorithm. Our extensive experiments suggest that the reward function learned this way generates POMDP policies that mimic the policies of the demonstrator well. 
    more » « less
  2. null (Ed.)
    Multi-task IRL recognizes that expert(s) could be switching between multiple ways of solving the same problem, or interleaving demonstrations of multiple tasks. The learner aims to learn the reward functions that individually guide these distinct ways. We present a new method for multi-task IRL that generalizes the well-known maximum entropy approach by combining it with a Dirichlet process based minimum entropy clustering of the observed data. This yields a single nonlinear optimization problem, called MinMaxEnt Multi-task IRL (MME-MTIRL), which can be solved using the Lagrangian relaxation and gradient descent methods. We evaluate MME- MTIRL on the robotic task of sorting onions on a processing line where the expert utilizes multiple ways of detecting and removing blemished onions. The method is able to learn the underlying reward functions to a high level of accuracy and it improves on the previous approaches. 
    more » « less
  3. Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition. 
    more » « less
  4. Cancer screening is a large, population-based intervention that would benefit from tools enabling individually-tailored decision making to decrease unintended consequences such as overdiagnosis. The heterogeneity of cancer screening participants advocates the need for more personalized approaches. Partially observable Markov decision processes (POMDPs) can be used to suggest optimal, individualized screening policies. However, determining an appropriate reward function can be challenging. Here, we propose the use of inverse reinforcement learning (IRL) to form rewards functions for lung and breast cancer screening POMDP models. Using data from the National Lung Screening Trial and our institution's breast screening registry, we developed two POMDP models with corresponding reward functions. Specifically, the maximum entropy (MaxEnt) IRL algorithm with an adaptive step size was used to learn rewards more efficiently; and combined with a multiplicative model to learn state-action pair rewards in the POMDP. The lung and breast cancer screening models were evaluated based on their ability to recommend appropriate screening decisions before the diagnosis of cancer. Results are comparable with experts' decisions. The lung POMDP demonstrated an improved performance in terms of recall and false positive rate in the second screening and post-screening stages. Precision (0.02-0.05) was comparable to experts' (0.02-0.06). The breast POMDP has excellent recall (0.97-1.00), matching the physicians and a satisfactory false positive rate (<0.03). The reward functions learned with the MaxEnt IRL algorithm, when combined with POMDP models in lung and breast cancer screening, demonstrate performance comparable to experts. 
    more » « less
  5. One approach to Imitation Learning is Behavior Cloning, in which a robot observes a supervisor and infers a control policy. A known problem with this “off-policy” approach is that the robot’s errors compound when drifting away from the supervisor’s demonstrations. On-policy, techniques alleviate this by iteratively collecting corrective actions for the current robot policy. However, these techniques can be tedious for human supervisors, add significant computation burden, and may visit dangerous states during training. We propose an off-policy approach that injects noise into the supervisor’s policy while demonstrating. This forces the supervisor to demonstrate how to recover from errors. We propose a new algorithm, DART (Disturbances for Augmenting Robot Trajectories), that collects demonstrations with injected noise, and optimizes the noise level to approximate the error of the robot’s trained policy during data collection. We compare DART with DAgger and Behavior Cloning in two domains: in simulation with an algorithmic supervisor on the MuJoCo tasks (Walker, Humanoid, Hopper, Half-Cheetah) and in physical experiments with human supervisors training a Toyota HSR robot to perform grasping in clutter. For high dimensional tasks like Humanoid, DART can be up to 3x faster in computation time and only decreases the supervisor’s cumulative reward by 5% during training, whereas DAgger executes policies that have 80% less cumulative reward than the supervisor. On the grasping in clutter task, DART obtains on average a 62% performance increase over Behavior Cloning. 
    more » « less