skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pyroclastic deposits of Ubehebe Crater, Death Valley, California, USA: Ballistics, pyroclastic surges, and dry granular flows
Abstract We describe and interpret deposits associated with the final Ubehebe Crater-forming, phreatomagmatic explosive phase of the multivent, monogenetic Ubehebe volcanic center. Ubehebe volcano is located in Death Valley, California, USA. Pyroclastic deposits occur in four main facies: (1) lapilli- and blockdominated beds, (2) thinly bedded lapilli tuff, (3) laminated and cross-laminated ash, and (4) massive lapilli ash/tuff. Lapilli- and block-dominated beds are found mostly within several hundred meters of the crater and transition outward into discontinuous lenses of lapilli and blocks; they are interpreted to have been deposited by ballistic processes associated with crater-forming explosions. Thinly bedded lapilli tuff is found mainly within several hundred meters, and laminated and cross-laminated ash extends at least 9 km from the crater center. Dune forms are common within ~2 km of the crater center, while finer-grained, distal deposits tend to exhibit planar lamination. These two facies (thinly bedded lapilli tuff and laminated and cross-laminated ash) are interpreted to record multiple pyroclastic surges (dilute pyroclastic currents). Repeated couplets of coarse layers overlain by finer-grained, laminated horizons suggest that many or most of the surges were transient, likely recording individual explosions, and they traveled over complex topography in some areas. These two factors complicate the application of classical sediment-transport theory to quantify surge properties. However, dune-form data provide possible constraints on the relationships between suspended load sedimentation and bed-load transport that are consistent using two independent approaches. Massive lapilli ash/tuff beds occur in drainages below steep slopes and can extend up to ~1 km onto adjacent valley floors beneath large catchments. Although they are massive in texture, their grain-size characteristics are shared with laminated and cross-laminated ash facies, with which they are locally interbedded. These are interpreted to record concentrated granular flows sourced by remobilized pyroclastic surge deposits, either during surge transport or shortly after, while the surge deposits retained their elevated initial pore-gas pressures. Although similar surge-derived concentrated flows have been described elsewhere (e.g., Mount St. Helens, Washington, USA, and Soufriére Hills, Montserrat, West Indies), to our knowledge Ubehebe is the first case where such processes have been identified at a maar volcano. These concentrated flows followed paths that were independent of the pyroclastic surges and represent a potential hazard at similar maar volcanoes in areas with complex terrain.  more » « less
Award ID(s):
2035260
PAR ID:
10399787
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geosphere
Volume:
18
Issue:
6
ISSN:
1553-040X
Page Range / eLocation ID:
1926 to 1957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hazard assessments in monogenetic volcanic fields require estimates of the runout of pyroclastic surges that result from phreatomagmatic explosive activity. Previous assessments used runout distances of 1–4 km, with large cases up to 6 km. Surge deposits at Ubehebe Crater (∼2100 y.b.p., Death Valley, California) have been traced ∼9 km from the crater center, and likely originally extended 1–3 km farther. There is no evidence that the Ubehebe Crater activity was unusually energetic; rather, its distal deposits are better preserved than those at most maar volcanoes because of its young age and the arid environment. Numerical simulations illustrate how low temperatures facilitate long runout of phreatomagmatic surges due to reduced expansion of entrained air compared to hot surges, allowing cool surges to retain higher densities than ambient air. We suggest that hazard assessments for volcanic fields with phreatomagmatic, maar‐forming eruptions should consider runout distances in the range of 10–15 km. 
    more » « less
  2. Abstract Soft sediment deformation structures are common in fine-grained pyroclastic deposits and are often taken, along with other characteristics, to indicate that deposits were emplaced in a wet and cohesive state. At Ubehebe Crater (Death Valley, California, USA), deposits were emplaced by multiple explosions, both directly from pyroclastic surges and by rapid remobilization of fresh, fine-ash-rich deposits off steep slopes as local granular flows. With the exception of the soft sediment deformation structures themselves, there is no evidence of wet deposition. We conclude that deformation was a result of destabilization of fresh, fine-grained deposits with elevated pore-gas pressure and dry cohesive forces. Soft sediment deformation alone is not sufficient to determine whether parent pyroclastic surges contained liquid water and caused wet deposition of strata. 
    more » « less
  3. The Sierra San Francisco (SSF) is a Neogene volcanic range along the topographic crest of the Baja California peninsula in northern Baja California Sur, Mexico. The SSF is ~55 km long (NW-SE) and ~30 km wide and its highest peaks exceed 1500 m elevation. The SSF has a long history of volcanism and has been eroded by deep, rugged, radially-draining canyons. The development of SSF topography is intimately associated with the volcanic evolution of the range. The SSF is a large and complex dacitic adakite dome complex largely built of a thick, up to 800 m, stratigraphic succession of dacitic tuff breccias with minor interbedded basaltic andesite lavas. These deposits overlie rare exposures of aeolian sandstone of unknown age. The tuff breccias represent block-and-ash-flows and lahars generated from steep-sided peleean dacite and andesite domes, with three radiometric dates of 11-10 Ma. This intermediate sequence is unconformably capped by widespread bajaite mafic lavas, 5.5-4.5 Ma. SSF topography evolved dramatically since the late Miocene: 1) From 11-10 Ma, adakite domes erupted across the central SSF, locally along NNW faults. Thick sequences of bedded tuff breccias accumulated around the domes and are radially inclined away from source domes. The duration of this volcanism is unknown. 2) From 10-5 Ma, deep erosion of the pyroclastic strata formed a range-wide radial drainage network, with channel depths of up to 130 m or more. 3) From 5.5-4.5 Ma, voluminous bajaite lavas from cinder cones and dike vents flooded the top of the range and flowed down the radial drainages with flow distances up to 12 km. Vents are strongly aligned along steep NNW normal faults. 4) After 4.5 Ma, erosion removed interfluves of tuff breccia not armored by younger mafic lavas. Today, the long, steep-sided, lava-capped ridges are inverted topographically. At Santa Martha, an area in the central SSF with the highest concentration of domes, hydrothermal alteration of the volcanic deposits during and after the dome volcanism caused severe material weakening and slope failure within the volcanic center. The area is now a distinctive erosional basin, partly filled with clay-rich landslide deposits. Comparable volcanic history and topographic development are likely to have occurred in a dome field of similar age and size at Santa Agueda, 60 km SE of Santa Martha. 
    more » « less
  4. The Whitehorse Group and Quartermaster Formation are extensive red-bed terrestrial sequences representing the final episode of sedimentation in the Palo Duro Basin in north-central Texas, U.S.A. Regionally, these strata record the culmination of a long-term regression sequence beginning in the middle to late Permian. The Whitehorse Group includes beds of abundant laminated to massive red quartz siltstone to fine sandstone and rare dolomite, laminated to massive gypsum, and claystones, as well as diagenetic gypsum. The Quartermaster Formation exhibits a change from nearly equal amounts of thin planar and lenticular fine sandstone and laminated to massive mudstone in its lower half to overlying strata with coarser-grained, cross-bedded sandstones indicative of meandering channels up to 7 m deep and rare overbank mudstones. Paleosols are absent in the Upper Whitehorse Group and only poorly developed in the Quartermaster Formation. Volcanic ash-fall deposits (tuffs) present in uppermost Whitehorse Group and lower Quartermaster Formation strata permit correlation among five stratigraphic sections distributed over ∼150 km and provide geochronologic age information for these rocks. Both the Whitehorse Group and Quartermaster Formation have traditionally been assigned to the late Permian Ochoan (Changhsingian) stage, and workers assumed that the Permian-Triassic boundary is characterized by a regionally significant unconformity. Chemostratigraphic or biostratigraphic evidence for this age assignment, however, have been lacking to date. Single zircon U-Pb CA-TIMS analyses from at least two distinct volcanic ash fall layers in the lower Quartermaster Formation, which were identified and collected from five different localities across the Palo Duro Basin, yield interpreted depositional ages ranging from 252.19 ± 0.30 to 251.74 ± 0.28 Ma. Single zircon U-Pb CA-TIMS analyses of detrital zircons from sandstones located only a few meters beneath the top of the Quartermaster Formation yield a range of dates from Mesoproterozoic (1418 Ma) to Middle Triassic (244.5 Ma; Anisian), the latter of which is interpreted as a maximum depositional age, which is no older than Anisian, thus indicating the Permian-Triassic boundary to lie somewhere within the lower Quartermaster Formation/upper Whitehorse Group succession. Stable carbon isotope data from 180 samples of early-burial dolomicrite cements preserve a chemostratigraphic signal that is similar among sections, with a large ∼−8‰ negative isotope excursion ∼20 m beneath the Whitehorse Group-Quartermaster Formation boundary. This large negative carbon isotope excursion is interpreted to be the same excursion associated with the end-Permian extinction and this is in concert with the new high precision radioisotopic age data presented and the fact that the excursion lies within a normal polarity stratigraphic magnetozone. Dolomite cement δ 13 C values remain less negative (between about −5 and −8 permil) into the lower part of the Quartermaster Formation before becoming more positive toward the top of the section. This long interval of negative δ 13 C values in the Quartermaster Formation is interpreted to represent the earliest Triassic (Induan) inception of biotic and ecosystem “recovery.” Oxygen isotope values of dolomicrite cements show a progressive trend toward more positive values through the boundary interval, suggesting substantially warmer conditions around the end-Permian extinction event and a trend toward cooler conditions after the earliest Triassic. Our observations on these strata show that the paleoenvironment and paleoclimate across the Permian-Triassic boundary in western, sub-equatorial Pangea was characterized by depositional systems that were not conducive to plant preservation. 
    more » « less
  5. Central Baja California (BC) experienced tectonism and volcanism that shaped the landscape from the Miocene to Recent. One important feature is the San Ignacio trough (SIT) that hosted a marine seaway or embayment and acted as a physical barrier to animal and plant migration. This barrier may be responsible for a well-known break in the DNA, N and S of this region. Central BC has also hosted contemporary voluminous and chemically diverse volcanism. Radiometric ages provide important constraints on the origins and longevity of critical topographic features. The Baja GeoGenomics research group is investigating the nature and timing of Pliocene marine and tidal deposits in the NE-oriented, low-lying SIT, located W of the peninsular divide. These new data reveal that the Sierra San Francisco, a highland volcanic area immediately N of the SIT, is a series of volcanoes constructed of dacitic and andesitic Peleean domes with voluminous lahar and pyroclastic flow deposits. These calcalkaline rocks were previously thought to be subduction-related magmatism and part of the early to middle Miocene (~24–12 Ma) Comondú Group. However, zircon U-Pb and 40Ar/39Ar dates yield ages of 11-9 Ma. These data indicate the Sierra San Francisco erupted post-subduction and is not part of the lithologically similar but older Comondú Group. Within the SIT, 12km NE of San Ignacio at 200 m asl, newly mapped marine tidal deposits, informally called the San Regis beds, indicate that the SIT has been significantly uplifted. Mafic scoria interbedded in tidal deposits yield a groundmass 40Ar/39Ar age of about 4.2 ± 0.1 Ma. San Regis tidal beds are unconformably overlain by a rhyolite ash-flow tuff from the Quaternary La Reforma caldera situated to the E, on the Gulf of California coast. The highly mobile ash cloud flowed W into the SIT at least as far as the San Regis beds locality NE of San Ignacio. The tuff yielded a preliminary U-Pb zircon age of 1.09 ± 0.04 Ma and an 40Ar/39Ar anorthoclase age of 1.11± 0.01 Ma. These dates indicate that the ash-flow was one of the latest erupted from the caldera and its distribution was in part controlled by the SIT. In BC genetic diversity along the peninsula appears to change at the latitude of the SIT. Tidal and volcanic deposits suggest this topographic low persisted for over 4Ma and remains a distinctive feature in the topography today. 
    more » « less