Summary Intraspecific variation in functional traits may mediate tree species' drought resistance, yet whether trait variation is due to genotype (G), environment (E), or G×E interactions remains unknown. Understanding the drivers of intraspecific trait variation and whether variation mediates drought response can improve predictions of species' response to future drought.Using populations of quaking aspen spanning a climate gradient, we investigated intraspecific variation in functional traits in the field as well as the influence of G and E among propagules in a common garden. We also tested for trait‐mediated trade‐offs in growth and drought stress tolerance.We observed intraspecific trait variation among the populations, yet this variation did not necessarily translate to higher drought stress tolerance in hotter/drier populations. Additionally, plasticity in the common garden was low, especially in propagules derived from the hottest/driest population. We found no growth–drought stress tolerance trade‐offs and few traits exhibited significant relationships with mortality in the natural populations, suggesting that intraspecific trait variation among the traits measured did not strongly mediate responses to drought stress.Our results highlight the limits of trait‐mediated responses to drought stress and the complex G×E interactions that may underlie drought stress tolerance variation in forests in dry environments. 
                        more » 
                        « less   
                    
                            
                            Changes in phenology can alter patterns of natural selection: the joint evolution of germination time and postgermination traits
                        
                    
    
            Summary The timing of a developmental transition (phenology) can influence the environment experienced by subsequent life stages. When phenology causes an organism to occupy a particular habitat as a consequence of the developmental cues used, it can act as a form of habitat tracking. Evolutionary theory predicts that habitat tracking can alter the strength, direction, and mode of natural selection on subsequently expressed traits.To test whether germination phenology altered natural selection on postgermination traits, we manipulated germination time by planting seedlings in seven germination cohorts spanning 2 yr. We measured selection on postgermination traits relating to drought, freezing, and heat tolerance using a diverse combination ofArabidopsis thalianamutants and naturally occurring ecotypes.Germination cohorts experienced variable selection: when dry, cold, and hot environments were experienced by seedlings, selection was intensified for drought, freezing, and heat tolerance, respectively. Reciprocally, postgermination traits modified the optimal germination time; genotypes had maximum fitness after germinating in environments that matched their physiological tolerances.Our results support the theoretical predictions of feedbacks between habitat tracking and traits expressed after habitat selection. In natural populations, whether phenological shifts alter selection on subsequently expressed traits will depend on the effectiveness of habitat tracking through phenology. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2118654
- PAR ID:
- 10399798
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 238
- Issue:
- 1
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 405-421
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In Mediterranean climates, the timing of seasonal rains determines germination, flowering phenology and fitness. As climate change alters seasonal precipitation patterns, it is important to ask how these changes will affect the phenology and fitness of plant populations. We addressed this question experimentally with the annual plant speciesArabidopsis thaliana.In a first experiment, we manipulated the date of rainfall onset and recorded germination phenology on sand and soil substrates. In a second experiment, we manipulated germination date, growing season length and mid‐season drought to measure their effects on flowering time and fitness. Within each experiment, we manipulated seed dormancy and flowering time using multilocus near‐isogenic lines segregating strong and weak alleles of the seed dormancy geneDOG1and the flowering time geneFRI. We synthesized germination phenology data from the first experiment with fitness functions from the second experiment to project population fitness under different seasonal rainfall scenarios.Germination phenology tracked rainfall onset but was slower and more variable on sand than on soil. Many seeds dispersed on sand in spring and summer delayed germination until the cooler temperatures of autumn. The high‐dormancyDOG1allele also prevented immediate germination in spring and summer. Germination timing strongly affected plant fitness. Fecundity was highest in the October germination cohort and declined in spring germinants. The late floweringFRIallele had lower fecundity, especially in early fall and spring cohorts. Projections of population fitness revealed that: (1) Later onset of autumn rains will negatively affect population fitness. (2) Slow, variable germination on sand buffers populations against fitness impacts of variable spring and summer rainfall. (3) Seasonal selection favours high dormancy and early flowering genotypes in a Mediterranean climate with hot dry summers. The high‐dormancyDOG1allele delayed germination of spring‐dispersed fresh seeds until more favourable early fall conditions, resulting in higher projected population fitness.These findings suggest that Mediterranean annual plant populations are vulnerable to changes in seasonal precipitation, especially in California where rainfall onset is already occurring later. The fitness advantage of highly dormant, early flowering genotypes helps explain the prevalence of this strategy in Mediterranean populations. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            Summary As climate change drives increased drought in many forested regions, mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. The dendrochronological record provides a window through which we can understand how tree size and traits shape growth responses to droughts.We analyzed tree‐ring records for 12 species in a broadleaf deciduous forest in Virginia (USA) to test hypotheses for how tree height, microenvironment characteristics, and species’ traits shaped drought responses across the three strongest regional droughts over a 60‐yr period.Drought tolerance (resistance, recovery, and resilience) decreased with tree height, which was strongly correlated with exposure to higher solar radiation and evaporative demand. The potentially greater rooting volume of larger trees did not confer a resistance advantage, but marginally increased recovery and resilience, in sites with low topographic wetness index. Drought tolerance was greater among species whose leaves lost turgor (wilted) at more negative water potentials and experienced less shrinkage upon desiccation.The tree‐ring record reveals that tree height and leaf drought tolerance traits influenced growth responses during and after significant droughts in the meteorological record. As climate change‐induced droughts intensify, tall trees with drought‐sensitive leaves will be most vulnerable to immediate and longer‐term growth reductions.more » « less
- 
            Summary It is well‐known that the mycorrhizal type of plants correlates with different modes of nutrient cycling and availability. However, the differences in drought tolerance between arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) plants remains poorly characterized.We synthesized a global dataset of four hydraulic traits associated with drought tolerance of 1457 woody species (1139 AM and 318 EcM species) at 308 field sites. We compared these traits between AM and EcM species, with evolutionary history (i.e. angiosperms vs gymnosperms), water availability (i.e. aridity index) and biomes considered as additional factors.Overall, we found that evolutionary history and biogeography influenced differences in hydraulic traits between mycorrhizal types. Specifically, we found that (1) AM angiosperms are less drought‐tolerant than EcM angiosperms in wet regions or biomes, but AM gymnosperms are more drought‐tolerant than EcM gymnosperms in dry regions or biomes, and (2) in both angiosperms and gymnosperms, variation in hydraulic traits as well as their sensitivity to water availability were higher in AM species than in EcM species.Our results suggest that global shifts in water availability (especially drought) may alter the biogeographic distribution and abundance of AM and EcM plants, with consequences for ecosystem element cycling and ultimately, the land carbon sink.more » « less
- 
            Abstract When thermal tolerances differ between interacting species, extreme temperature events (heat waves) will alter the ecological outcomes. The parasitoid waspCotesia congregatasuffers high mortality when reared throughout development at temperatures that are nonstressful for its host,Manduca sexta. However, the effects of short‐term heat stress during parasitoid development are unknown in this host–parasitoid system.Here, we investigate how duration of exposure, daily maximum temperature, and the developmental timing of heat waves impact the performance ofC.congregataand its host¸M.sexta. We find that the developmental timing of short‐term heat waves strongly determines parasitoid and host outcomes.Heat waves during parasitoid embryonic development resulted in complete wasp mortality and the production of giant, long‐lived hosts. Heat waves during the 1st‐instar had little effect on wasp success, whereas heat waves during the parasitoid's nutritionally and hormonally critical 2nd instar greatly reduced wasp emergence and eclosion. The temperature and duration of heat waves experienced early in development determined what proportion of hosts had complete parasitoid mortality and abnormal phenotypes.Our results suggest that the timing of extreme temperature events will be crucial to determining the ecological impacts on this host–parasitoid system. Discrepancies in thermal tolerance between interacting species and across development will have important ramifications on ecosystem responses to climate change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
