skip to main content

This content will become publicly available on March 1, 2024

Title: Interspecific hybridization explains rapid gorget colour divergence in Heliodoxa hummingbirds (Aves: Trochilidae)
Hybridization is a known source of morphological, functional and communicative signal novelty in many organisms. Although diverse mechanisms of established novel ornamentation have been identified in natural populations, we lack an understanding of hybridization effects across levels of biological scales and upon phylogenies. Hummingbirds display diverse structural colours resulting from coherent light scattering by feather nanostructures. Given the complex relationship between feather nanostructures and the colours they produce, intermediate coloration does not necessarily imply intermediate nanostructures. Here, we characterize nanostructural, ecological and genetic inputs in a distinctive Heliodoxa hummingbird from the foothills of eastern Peru. Genetically, this individual is closely allied with Heliodoxa branickii and Heliodoxa gularis , but it is not identical to either when nuclear data are assessed. Elevated interspecific heterozygosity further suggests it is a hybrid backcross to H. branickii . Electron microscopy and spectrophotometry of this unique individual reveal key nanostructural differences underlying its distinct gorget colour, confirmed by optical modelling. Phylogenetic comparative analysis suggests that the observed gorget coloration divergence from both parentals to this individual would take 6.6–10 My to evolve at the current rate within a single hummingbird lineage. These results emphasize the mosaic nature of hybridization and suggest that hybridization may contribute to the structural colour diversity found across hummingbirds.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Royal Society Open Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. vonHoldt, Bridgett (Ed.)
    Abstract Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes. 
    more » « less
  2. Abstract

    Existing structural coloration methods using thin films, commonly implemented in high‐purity aluminium, produce colours which are highly dependent on the viewing angle because of the inherent angular dependence of thin film interference. Adapting the thin film coloration mechanism to anodisation of industrial‐quality aluminium alloys, which scatter light more efficiently than their high‐purity counterparts, reduces angle dependence in the colour produced. This reduction of angle dependence, as well as the wide use of anodised aluminium in consumer products, suggests that structural colour based on anodised aluminium could potentially be scaled up for commercial scale production.

    more » « less
  3. Abstract

    Colourful displays are used by diverse taxa to warn predators of dangerous defences (aposematism). Aposematic coloration is especially widespread among amphibians, which are often protected by harmful toxins. Pacific newts (Taricha) are considered a model of aposematism because when threatened, they arch the head and tail upwards to expose a vivid orange ventrum against a dark dorsum. Given that newts are defended by tetrodotoxin (TTX), a lethal neurotoxin, this signal is assumed to warn predators that an attack would be risky. However, colours have not been quantified in Taricha, and it remains unknown whether coloration provides qualitatively honest (signalling toxic defence) or quantitatively honest (signalling toxin level) warnings. We used two colour quantification methods (spectrometry and hyperspectral imaging) to measure chromatic (hue) and achromatic (brightness) qualities of ventral and dorsal coloration in two newt species (Taricha granulosa and Taricha sierrae). We assessed qualitative honesty using visual models of potential predators (snakes, birds and mammals). Next, we evaluated quantitative honesty by measuring TTX in newts and examining the potential correlation between defence level (amount of TTX) and colorimetrics. We found support for qualitative but not quantitative honesty. Selective pressures and evolutionary constraints might impede the evolution of honest quantitative signalling in this system.

    more » « less
  4. Structural coloration is a quickly growing field, encompassing physical and photonic processes such as interference, diffraction, and scattering. In this study, we investigated the optical effects in the visible wavelength range, and in particular, the colour gamuts achievable with absorber–dielectric–metal sandwich structures. These chemical‐free layered structures are highly tunable, easily scaled, optical cavities that are capable of generating remarkable colours whose properties are determined completely by material and structural parameters. We employed experimental and numerical strategies to demonstrate that each absorber spans a unique colour gamut, i.e. a subset of the full chromaticity space. While gamut overlap is observed between different absorber types, the gamut areas unique to each absorber occur at different hues of high excitation purity. A comprehensive understanding of how these colour gamuts develop and how different materials may be combined to expand larger subsets of the chromaticity space is required in order to maximize the variety of colours achievable with this system and elevate it into a ‘structural coloration technology’.

    more » « less

    Hummingbirds, a highly diverse avian family, are specialized vertebrate pollinators that feed upon carbohydrate-rich nectar to fuel their fast metabolism while consuming invertebrates to obtain protein. Previous work has found that morphologically diverse hummingbird communities exhibit higher diet specialization on floral resources than morphologically similar hummingbird communities. Due to the difficulties of studying avian diets, we have little understanding whether hummingbirds show similar patterns with their invertebrate prey. Here, we use DNA metabarcoding to analyze floral and invertebrate diets of 3 species of sympatric North American hummingbirds. We collected fecal samples from 89 Anna’s (Calypte anna), 39 Black-chinned (Archilochus alexandri), and 29 Calliope (Selasphorus calliope) hummingbirds in urban and rural localities as well as across an elevational gradient from sea level to 2,500 meters above sea level in California, USA. We found hummingbirds showed high dietary overlap in both invertebrate and plant resources, with few invertebrate and plant families common to most individuals and many families found in only a few individuals. Chironomidae was the most common invertebrate family across all species, and Rosaceae and Orobanchaceae were the most common plant families. Anna’s Hummingbirds had significantly higher invertebrate diet diversity than Black-chinned Hummingbirds when found at the same sites, but we found no difference in plant diet diversity among any of the 3 species. Hummingbirds in urban sites had higher plant diet diversity than in rural sites, but we found no effect of elevation on dietary richness. Our study shows how DNA metabarcoding can be used to non-invasively investigate previously unknown life-histories of well-studied birds, lending insight to community structure, function, and evolution.

    more » « less