skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A comprehensive characterization of agronomic and end-use quality phenotypes across a quinoa world core collection
Quinoa ( Chenopodium quinoa Willd.), a pseudocereal with high protein quality originating from the Andean region of South America, has broad genetic variation and adaptability to diverse agroecological conditions, contributing to the potential to serve as a global keystone protein crop in a changing climate. However, the germplasm resources currently available to facilitate quinoa expansion worldwide are restricted to a small portion of quinoa’s total genetic diversity, in part because of day-length sensitivity and issues related to seed sovereignty. This study aimed to characterize phenotypic relationships and variation within a quinoa world core collection. The 360 accessions were planted in a randomized complete block design with four replicates in each of two greenhouses in Pullman, WA during the summer of 2018. Phenological stages, plant height, and inflorescence characteristics were recorded. Seed yield, composition, thousand seed weight, nutritional composition, shape, size, and color were measured using a high-throughput phenotyping pipeline. Considerable variation existed among the germplasm. Crude protein content ranged from 11.24% to 17.81% (fixed at 14% moisture). We found that protein content was negatively correlated with yield and positively correlated with total amino acid content and days to harvest. Mean essential amino acids values met adult daily requirements but not leucine and lysine infant requirements. Yield was positively correlated with thousand seed weight and seed area, and negatively correlated with ash content and days to harvest. The accessions clustered into four groups, with one-group representing useful accessions for long-day breeding programs. The results of this study establish a practical resource for plant breeders to leverage as they strategically develop germplasm in support of the global expansion of quinoa.  more » « less
Award ID(s):
1940115
PAR ID:
10400005
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
14
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jain, Shri_Mohan (Ed.)
    Tef Eragrostis tef(Zucc.) Trotter] is the major staple crop for millions of people in Ethiopia and Eritrea and is believed to have been domesticated several thousand years ago. Tef has the smallest grains of all the cereals, which directly impacts its productivity and presents numerous challenges to its cultivation. In this study, we assessed the natural variation in seed size of 189 tef and 11 accessions of its wild progenitor Indian lovegrass (Eragrostis pilosa (L.) P. Beauv.) and explored the mineral distribution of representative accessions. Our findings revealed significant natural variation in seed size and mineral concentration among both the tef and E. pilosa accessions. We observed significant variation in seed length, seed width, and seed area among the accessions of both Eragrostis spp. we analyzed. Using representative accessions of both species, we also found significant variation in 1000-grain weight. The observed variation in seed size attributes prompted us to use comparative genomics to identify seed size regulating genes based on the well-studied and closely related monocot cereal rice (Oryza sativa L.]. Using this approach, we identified putative orthologous genes in the tef genome that belong to a number of key pathways known to regulate seed size in rice. Phylogenetic analysis of putative tef orthologs of ubiquitin-proteasome, G-protein, MAPK, and brassinosteroid (BR)-family genes indicate significant similarity to seed size regulating genes in rice and other cereals. Because tef is known to be more nutrient-dense than other more common cereals such as rice, wheat, and maize, we also studied the mineral concentration of selected accessions using ICP-OES and explored their distribution within the seeds using synchrotron-based X-ray fluorescence (SXRF) microscopy. The findings showed significant variation in seed mineral concentration and mineral distribution among the selected accessions of both Eragrostis spp. This study highlights the natural variation in seed size attributes, mineral concentration, and distribution, while establishing the basis for understanding the genetic mechanisms regulating these traits. We hope our findings will lead to a better understanding of the evolution of tef at the genetic level and for the development of elite tef cultivars to improve seed size, yield, and quality of the grains. 
    more » « less
  2. Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive, laborious, and expensive. However, with the plummeting costs of next-generation sequencing and the addition of genomic selection to the plant breeder’s toolbox, we now can more efficiently tap the genetic diversity within large germplasm collections. In this study, we applied and evaluated genomic prediction’s potential to a set of 482 pea ( Pisum sativum L.) accessions—genotyped with 30,600 single nucleotide polymorphic (SNP) markers and phenotyped for seed yield and yield-related components—for enhancing selection of accessions from the USDA Pea Germplasm Collection. Genomic prediction models and several factors affecting predictive ability were evaluated in a series of cross-validation schemes across complex traits. Different genomic prediction models gave similar results, with predictive ability across traits ranging from 0.23 to 0.60, with no model working best across all traits. Increasing the training population size improved the predictive ability of most traits, including seed yield. Predictive abilities increased and reached a plateau with increasing number of markers presumably due to extensive linkage disequilibrium in the pea genome. Accounting for population structure effects did not significantly boost predictive ability, but we observed a slight improvement in seed yield. By applying the best genomic prediction model (e.g., RR-BLUP), we then examined the distribution of genotyped but nonphenotyped accessions and the reliability of genomic estimated breeding values (GEBV). The distribution of GEBV suggested that none of the nonphenotyped accessions were expected to perform outside the range of the phenotyped accessions. Desirable breeding values with higher reliability can be used to identify and screen favorable germplasm accessions. Expanding the training set and incorporating additional orthogonal information (e.g., transcriptomics, metabolomics, physiological traits, etc.) into the genomic prediction framework can enhance prediction accuracy. 
    more » « less
  3. Summary Day neutrality, or insensitivity to photoperiod (day length), is an important domestication trait in many crop species. Although the oilseed cropCamelina sativahas been cultivated since the Neolithic era, day-neutral accessions have yet to be described. We sought to leverage genetic diversity in existing germplasms to identifyC. sativaaccessions with low photoperiod sensitivity for future engineering of this trait. We quantified variation in the photoperiod response across 161 accessions ofC. sativaby measuring hypocotyl length of four-day-old seedlings grown in long-day and short-day conditions, finding wide variation in photoperiod response. Similarly, soil-grown adult plants from selected accessions showed variation in photoperiod response in several traits; however, photoperiod responses in seedling and adult traits were not correlated, suggesting complex mechanistic underpinnings. Although RNA-seq experiments of the reference accession Licalla identified several differentially regulatedArabidopsissyntelogs involved in photoperiod response, includingCOL2, FT, LHYandWOX4, expression of these genes in the accessions did not correlate with differences in their photoperiod sensitivity. Taken together, we show that all tested accessions show some degree of photoperiod response, and that this trait is likely complex, involving several and separable seedling and adult traits. Significance StatementDay neutrality (photoperiod insensitivity) is a common trait in domesticated crops; however, the ancient oilseed cropCamelina sativahas remained photoperiod-sensitive, which likely limits seed yields. Here, we show that photoperiod sensitivity is conserved across manyC. sativacultivars, albeit to different degrees, and we establish that photoperiod sensitivity is a complex trait, which will require genetic engineering to achieve day neutrality. 
    more » « less
  4. Abstract Plant breeding relies on the presence of genetic variation, which is generated by a random process of mutagenesis that acts on existing gene pools. This variation is then recombined into new forms at frequencies impacted by the local euchromatin and heterochromatin environment. The result is a genetic lottery where plant breeders face increasingly low odds of generating a “winning” plant genotype. Genome editing tools enable targeted manipulation of the genome, providing a means to increase genetic variation and enhancing the chances for plant breeding success. Editing can be applied in a targeted way, where known genetic variation that improves performance can be directly brought into lines of interest through either deletion or insertion. This empowers approaches that are traditionally difficult such as novel domestication and introgression of wild accessions into a germplasm pool. Furthermore, broader editing-mediated approaches such as recombination enhancement and targeted random mutagenesis bring novel ways of variation creation to the plant breeding toolbox. Continued development and application of plant genome editing tools will be needed to aid in meeting critical global crop improvement needs. 
    more » « less
  5. Abstract Genebanks are valuable resources for crop improvement through the acquisition,ex-situconservation and sharing of unique germplasm among plant breeders and geneticists. With over seven million existing accessions and increasing storage demands and costs, genebanks need efficient characterization and curation to make them more accessible and usable and to reduce operating costs, so that the crop improvement community can most effectively leverage this vast resource of untapped novel genetic diversity. However, the sharing and inconsistent documentation of germplasm often results in unintentionally duplicated collections with poor characterization and many identical accessions that can be hard or impossible to identify without passport information and unmatched accession identifiers. Here we demonstrate the use of genotypic information from these accessions using a cost-effective next generation sequencing platform to find and remove duplications. We identify and characterize over 50% duplicated accessions both within and across genebank collections ofAegilops tauschii, an important wild relative of wheat and source of genetic diversity for wheat improvement. We present a pipeline to identify and remove identical accessions within and among genebanks and curate globally unique accessions. We also show how this approach can also be applied to future collection efforts to avoid the accumulation of identical material. When coordinated across global genebanks, this approach will ultimately allow for cost effective and efficient management of germplasm and better stewarding of these valuable resources. 
    more » « less