Abstract The Great Salt Lake reached the lowest water volume in its entire 170+ year record in 2022. To explain this record low we develop and apply a lake mass‐balance model and perform four simulations: one where all input and output variables are fixed to their mid‐20th century average resulting in an equilibrium lake volume, and three others where one of the input variables (precipitation or streamflow) or the output variable (evaporation) follows observations while the other two are fixed to their mid‐20th century average. Results show anomalously low streamflow accounting for the largest proportion of the lake volume departure from the equilibrium state by 2022, resulting in about three times the additional water loss over 1950–2022 as increasing evaporation, which played the second largest role. Precipitation changes played a minimal role. Though streamflow had a greater effect, the lake would not have reached the record low volume without increasing evaporation.
more »
« less
A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures
Severe deterioration of water quality in lakes, characterized by overabundance of algae and declining dissolved oxygen in the deep lake (DO B ), was one of the ecological crises of the 20th century. Even with large reductions in phosphorus loading, termed “reoligotrophication,” DO B and chlorophyll (CHL) have often not returned to their expected pre–20th-century levels. Concurrently, management of lake health has been confounded by possible consequences of climate change, particularly since the effects of climate are not neatly separable from the effects of eutrophication. Here, using Lake Geneva as an iconic example, we demonstrate a complementary alternative to parametric models for understanding and managing lake systems. This involves establishing an empirically-driven baseline that uses supervised machine learning to capture the changing interdependencies among biogeochemical variables and then combining the empirical model with a more conventional equation-based model of lake physics to predict DO B over decadal time-scales. The hybrid model not only leads to substantially better forecasts, but also to a more actionable description of the emergent rates and processes (biogeochemical, ecological, etc.) that drive water quality. Notably, the hybrid model suggests that the impact of a moderate 3°C air temperature increase on water quality would be on the same order as the eutrophication of the previous century. The study provides a template and a practical path forward to cope with shifts in ecology to manage environmental systems for non-analogue futures.
more »
« less
- PAR ID:
- 10400009
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 26
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown.To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800‐year high‐resolution lake‐sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable isotopes of C and N serve as proxies of past changes in fire, vegetation and ecosystem processes such as nitrogen cycling and soil erosion, within a small subalpine forest watershed. A published lake‐level history from Silver Lake provides a local record of palaeohydrology.A trend towards increased effective moisture over the late Holocene coincided with a distinct shift in the pollen assemblage c. 1900 yr BP, resulting from increased subalpine conifer abundance. Fire activity, inferred from peaks in macroscopic charcoal, decreased significantly after 1900 yr BP, from one fire event every 126 yr (83–184 yr, 95% CI) from 4800 to 1900 yr BP, to one event every 223 yr (175–280 yr) from 1900 yr BP to present.Across the record, individual fire events were followed by two distinct decadal‐scale biogeochemical responses, reflecting differences in ecosystem impacts of fires on watershed processes. These distinct biogeochemical responses were interpreted as reflecting fire severity, highlighting (i) erosion, likely from large or high‐severity fires, and (ii) nutrient transfers and enhanced within‐lake productivity, likely from lower severity or patchier fires. Biogeochemical and vegetation proxies returned to pre‐fire values within decades regardless of the nature of fire effects.Synthesis. Palaeorecords of fire and ecosystem responses provide a novel view revealing past variability in fire effects, analogous to spatial variability in fire severity observed within contemporary wildfires. Overall, the palaeorecord highlights ecosystem resilience to fire across long‐term variability in climate and fire activity. Higher fire frequencies in past millennia relative to the 20th and 21st century suggest that northern Rocky Mountain subalpine ecosystems could remain resilient to future increases in fire activity, provided continued ecosystem recovery within decades.more » « less
-
null (Ed.)Abstract Nearshore (littoral) habitats of clear lakes with high water quality are increasingly experiencing unexplained proliferations of filamentous algae that grow on submerged surfaces. These filamentous algal blooms (FABs) are sometimes associated with nutrient pollution in groundwater, but complex changes in climate, nutrient transport, lake hydrodynamics, and food web structure may also facilitate this emerging threat to clear lakes. A coordinated effort among members of the public, managers, and scientists is needed to document the occurrence of FABs, to standardize methods for measuring their severity, to adapt existing data collection networks to include nearshore habitats, and to mitigate and reverse this profound structural change in lake ecosystems. Current models of lake eutrophication do not explain this littoral greening. However, a cohesive response to it is essential for protecting some of the world's most valued lakes and the flora, fauna, and ecosystem services they sustain.more » « less
-
Hot Air, Hot Lakes, or Both? Exploring Mid‐Holocene African Temperatures Using Proxy System ModelingAbstract Climate models predict Africa will warm by up to 5°C in the coming century, stressing African societies. To provide independent constraints on model predictions, this study compares two notable reconstructions of East African temperatures to those predicted by Paleoclimate Model Intercomparison Project (PMIP3) and transient TraCE (Transient Climate Evolution) simulations, focusing on the Mid‐Holocene (MH, 5–8 kyr B.P.). Reconstructions of tropical African temperature derived from lake sedimentary archives indicate 1–2.5°C of warming during the MH relative to the 20th century, but most climate models do not replicate the warming observed in these paleoclimate data. We investigate this discrepancy using a new lake proxy system model, with attention to the (potentially non‐stationary) relationship between lake temperature and air temperature. We find amplified lake surface temperature changes compared to air temperature during the MH due to heightened seasonality and precessional forcing. Lacustrine processes account for some of the warming, and highlight how the lake heat budget leads to a rectification of the seasonal cycle; however, the simulated lake heating bias is insufficient to reconcile the full discrepancy between the models and the proxy‐derived MH warming. We find further evidence of changes in mixing depth over time, potentially driven by changes in cloud cover and shortwave radiative fluxes penetrating the lake surface. This may confound interpretation for glycerol dialkyl glycerol tetraethers (GDGT) compounds which exist in the mixed layer, and suggests a need for independent constraints on mixed layer depth. This work provides a new interpretive framework for invaluable paleoclimate records of temperature changes over the African continent.more » « less
-
Abstract Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long‐term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long‐term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools—an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory.more » « less
An official website of the United States government

