skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shrubs Compensate for Tree Leaf Area Variation and Influence Vegetation Indices in Post‐Fire Siberian Larch Forests
Abstract In post‐fire Siberian larch forests, where tree density can vary within a burn perimeter, shrubs constitute a substantial portion of the vegetation canopy. Leaf area index (LAI), defined as the one‐sided total green leaf area per unit ground surface area, is useful for characterizing variation in plant canopies. We estimated LAI with allometry for trees and tall shrubs (>0.5 and <1.5 m) across 26 sites with varying tree stem density (0.05–3.3 stems/m2) and canopy cover (4.6%–76.9%) in a uniformly‐aged mature Siberian larch forest that regenerated following a fire ∼75 years ago. We investigated relationships between tree density, tree LAI, and tall shrub LAI, and between LAI and satellite observations of Normalized Difference and Enhanced Vegetation Indices (NDVI and EVI). Across the density gradient, tree LAI increases with increasing tree density, while tall shrub LAI decreases, exhibiting no patterns in combined tree‐shrub LAI. We also found significant positive relationships between tall shrub LAI and NDVI/EVI from PlanetScope and Landsat imagery. These findings suggest that tall shrubs compensate for lower tree LAI in tree canopy gaps, forming a canopy with contiguous combined tree‐shrub LAI across the density gradient. Our findings suggest that NDVI and EVI are more sensitive to variation in tall shrub canopies than variation in tree canopies or combined tree‐shrub canopies in these ecosystems. The results improve our understanding of the relationships between forest density and tree and shrub leaf area and have implications for interpreting spatial variability in LAI, NDVI, and EVI in Siberian boreal forests.  more » « less
Award ID(s):
1708322 1708344 2224776 1636476
PAR ID:
10400037
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
128
Issue:
3
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cajander larch (Larix cajanderi Mayr.) forests of the Siberian Arctic are experiencing increased wildfire activity in conjunction with climate warming. These shifts could affect postfire variation in the density and arrangement of trees and understory plant communities. To better understand how understory plant composition, abundance, and diversity vary with tree density, we surveyed understory plant communities and stand characteristics (e.g., canopy cover, active layer depth, and soil organic layer depth) within 25 stands representing a density gradient of similarly-aged larch trees that established following a 1940 fire near Cherskiy, Russia. Understory plant diversity and mean total plant abundance decreased with increased canopy cover. Canopy cover was also the most important variable affecting individual species’ abundances. In general, tall shrubs (e.g., Betula nana subsp. exilis) were more abundant in low-density stands with high light availability, and mosses (e.g., Sanionia spp.) were more abundant in high-density stands with low light availability. These results provide evidence that postfire variation in tree recruitment affects understory plant community composition and diversity as stands mature. Therefore, projected increases in wildfire activity in the Siberian Arctic could have cascading impacts on forest structure and composition in both overstory and understory plant communities. 
    more » « less
  2. null (Ed.)
    The ability to monitor post-fire ecological responses and associated vegetation cover change is crucial to understanding how boreal forests respond to wildfire under changing climate conditions. Uncrewed aerial vehicles (UAVs) offer an affordable means of monitoring post-fire vegetation recovery for boreal ecosystems where field campaigns are spatially limited, and available satellite data are reduced by short growing seasons and frequent cloud cover. UAV data could be particularly useful across data-limited regions like the Cajander larch (Larix cajanderi Mayr.) forests of northeastern Siberia that are susceptible to amplified climate warming. Cajander larch forests require fire for regeneration but are also slow to accumulate biomass post-fire; thus, tall shrubs and other understory vegetation including grasses, mosses, and lichens dominate for several decades post-fire. Here we aim to evaluate the ability of two vegetation indices, one based on the visible spectrum (GCC; Green Chromatic Coordinate) and one using multispectral data (NDVI; Normalized Difference Vegetation Index), to predict field-based vegetation measures collected across post-fire landscapes of high-latitude Cajander larch forests. GCC and NDVI showed stronger linkages with each other at coarser spatial resolutions e.g., pixel aggregated means with 3-m, 5-m and 10-m radii compared to finer resolutions (e.g., 1-m or less). NDVI was a stronger predictor of aboveground carbon biomass and tree basal area than GCC. NDVI showed a stronger decline with increasing distance from the unburned edge into the burned forest. Our results show NDVI tended to be a stronger predictor of some field-based measures and while GCC showed similar relationships with the data, it was generally a weaker predictor of field-based measures for this region. Our findings show distinguishable edge effects and differentiation between burned and unburned forests several decades post-fire, which corresponds to the relatively slow accumulation of biomass for this ecosystem post-fire. These findings show the utility of UAV data for NDVI in this region as a tool for quantifying and monitoring the post-fire vegetation dynamics in Cajander larch forests. 
    more » « less
  3. Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified snag and woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests. 
    more » « less
  4. Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests. 
    more » « less
  5. Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that changes in post-fire larch recruitment impact C accumulation through tree density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by quantifying C pools across a Cajander larch (Larix cajanderi Mayr.) tree density gradient within a fire perimeter near Cherskiy, Russia that burned in ~1940. Across the density gradient, from 2010 - 2017 we inventoried larch trees and harvested ground-layer vegetation to estimate above ground contribution to C pools. We also quantified woody debris C pools and sampled below ground C pools (soil, fine roots, and coarse roots) in the organic + upper mineral soils. Our findings should highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests. 
    more » « less