skip to main content

Title: Electrochemical and Structural Characterization of Soft Landed Tungsten‐Substituted Lindqvist Polyoxovanadate‐Alkoxides

Lindqvist polyoxovanadate‐alkoxide (POV‐alkoxide) clusters are excellent candidates for applications in energy storage and conversion due to their rich electrochemical profiles. One approach to tune the redox properties of these cluster complexes is through substitutional cationic doping within the hexavanadate core. Here, we report the synthesis of a series of tungsten‐substituted POV‐alkoxide clusters with one and two tungsten atoms. Soft landing of mass‐selected ions was used to purify heterometal POV‐alkoxides that cannot be readily separated using conventional approaches. The soft landed POV‐alkoxides are characterized using infrared reflection‐absorption spectroscopy and electrospray ionization mass spectrometry. The redox properties of the isolated ions are examined using an in situ electrochemical cell which enables traditional in vacuo electrochemical measurements inside of an ion soft landing instrument. Although the overall cluster core retains redox activity after tungsten doping, vanadium‐based redox couples (VV/VIV) are shifted substantially, indicating a pronounced effect of a heteroatom on the electronic structure of the core.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The selective uptake of lithium ions is of great interest for chemists and engineers because of the numerous uses of this element for energy storage and other applications. However, increasing demand requires improved strategies for the extraction of this element from mixtures containing high concentrations of alkaline impurities. Here, we study solution phase interactions of lithium, sodium, and potassium cations with polyoxovanadate-alkoxide clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 3 H 7 , C 5 H 11 ), using square wave voltammetry and cyclic voltammetry. In all cases, the most reducing event of the cluster shifts anodically as the ionic radius of the cation decreases, indicating increased stability of the reduced cluster and further suggesting that these assemblies might be useful for the selective uptake of Li + . Exploring the consequence of ligand length, we found that the short-chain cluster, [V 6 O 7 (OCH 3 ) 12 ], irreversibly binds Li + in the presence of excess potassium (K + ) and exhibits an electrochemical response in titration experiments similar to that observed upon the addition of Li + to the POV–alkoxide in the presence of non-coordinating tetrabutylammonium ions. However, in the presence of excess sodium (Na + ), the cluster showed only a modest preference for lithium, with exchange between sodium and lithium ions governed by equilibrium. Extending these studies to [V 6 O 7 (OC 5 H 11 ) 12 ], we found that the presence of the pentyl ligands allows the assembly to irreversibly bind Li + in the presence of Na + or K + . The change in mechanism caused by surface functionalization of the clusters increases the differential binding affinity for more compact cations, translating to improved selectivity for Li + uptake in these molecular assemblies. 
    more » « less
  2. Here, we expand on the synthesis and characterization of chloride-functionalized polyoxovanadate-alkoxide (POV-alkoxide) clusters, to include the halogenation of mixed-valent vanadium oxide assemblies. These findings build on our previously disclosed results describing the preparation of a mono-anionic chloride-functionalized cluster, [V 6 O 6 Cl(OC 2 H 5 ) 12 ] 1− , by chlorination of [V 6 O 7 (OC 2 H 5 ) 12 ] 2− with AlCl 3 , aimed at understanding the electronic consequences of the introduction of halide-defects in bulk metal oxides ( e.g. VO 2 ). While chlorination of the mixed-valent POV-ethoxide clusters was not possible using AlCl 3 , we have found that the chloride-substituted oxidized derivatives of the Lindqvist vanadium-oxide clusters can be formed using TiCl 3 (thf) 3 with [V 6 O 7 (OC 2 H 5 ) 12 ] n ( n = 1−, 0) or WCl 6 with [V 6 O 7 (OC 2 H 5 ) 12 ] 0 . Characterization of the chloride-containing products, [V 6 O 6 Cl(OC 2 H 5 ) 12 ] n ( n = 0, 1+), was accomplished via 1 H NMR spectroscopy, X-ray crystallography, and elemental analysis. Electronic analysis of the redox series of Cl-doped POV-alkoxide clusters via infrared and electronic absorption spectroscopies revealed all redox events are localized to the vanadyl portion of the cluster, with the site differentiated V III –Cl moiety retaining its reduced oxidation state across a 1.9 V window. These results present new synthetic routes for accessing chloride-doped POV-alkoxide clusters from mixed-valent vanadium oxide precursors. 
    more » « less
  3. We report the synthesis and characterisation of a series of siloxide-functionalised polyoxovanadate–alkoxide (POV–alkoxide) clusters, [V 6 O 6 (OSiMe 3 )(OMe) 12 ] n ( n = 1−, 2−), that serve as molecular models for proton and hydrogen-atom uptake in vanadium dioxide, respectively. Installation of a siloxide moiety on the surface of the Lindqvist core was accomplished via addition of trimethylsilyl trifluoromethylsulfonate to the fully-oxygenated cluster [V 6 O 7 (OMe) 12 ] 2− . Characterisation of [V 6 O 6 (OSiMe 3 )(OMe) 12 ] 1− by X-ray photoelectron spectroscopy reveals that the incorporation of the siloxide group does not result in charge separation within the hexavanadate assembly, an observation that contrasts directly with the behavior of clusters bearing substitutional dopants. The reduced assembly, [V 6 O 6 (OSiMe 3 )(OMe) 12 ] 2− , provides an isoelectronic model for H-doped VO 2 , with a vanadium( iii ) ion embedded within the cluster core. Notably, structural analysis of [V 6 O 6 (OSiMe 3 )(OMe) 12 ] 2− reveals bond perturbations at the siloxide-functionalised vanadium centre that resemble those invoked upon H-atom uptake in VO 2 through ab initio calculations. Our results offer atomically precise insight into the local structural and electronic consequences of the installation of hydrogen-atom-like dopants in VO 2 , and challenge current perspectives of the operative mechanism of electron–proton co-doping in these materials. 
    more » « less
  4. We report a rare example of oxygen atom transfer (OAT) from a polyoxometalate cluster to a series of tertiary phosphanes. Addition of PR 3 (PR 3 = PMe 3 , PMe 2 Ph, PMePh 2 , PPh 3 ) to a neutral methoxide-bridged polyoxovanadate-alkoxide (POV-alkoxide) cluster, [V 6 O 7 (OMe) 12 ] 0 , results in isolation of a reduced structure with phosphine oxide datively coordinated to a site-differentiated V III ion. A positive correlation between the steric and electronic properties of the phosphane and the reaction rate was observed. Further investigation of the steric influence of the alkoxy-bridged clusters on OAT was probed through the use of POV clusters with bridging alkoxide ligands of varying chain length ([V 6 O 7 (OR′) 12 ]; R′ = Et, n Pr). These investigations expose that steric hinderance of the vanadyl moieties has significant influence on the rate of OAT. Finally, we report the reactivity of the reduced POV-alkoxide clusters with styrene oxide, resulting in the deoxygenation of the substrate to generate styrene. This result is the first example of epoxide deoxygenation using homometallic polyoxometalate clusters, demonstrating the potential for mono-vacant Lindqvist clusters to catalyze the removal of oxygen atoms from organic substrates. 
    more » « less
  5. null (Ed.)
    The incorporation of substitutional Co2+ impurities in [Cd10S4(SPh)16]4– (Cd10) molecular clusters prepared by the self-assembly method where Na2S is the sulfur precursor and a redox method where elemental S is the sulfur precursor is studied. The Co2+ ions provide unique spectroscopic and chemical handles to monitor dopant speciation during cluster formation and determine what role, if any, other cluster species play during Cd10 cluster formation. In contrast to the redox method that produces exclusively surface-exchanged Co2+-doped Cd10 (Co:Cd10), the preparation of Cd10 by the self-assembly method in the presence of Co2+ ions results in Co2+ incorporation at both the surface and core sites of the Cd10 cluster. Electrospray ionization mass spectrometry (ESI–MS) analysis of the dopant distribution for the self-assembly synthesis of Co:Cd10 is consistent with a near-Poissonian distribution for all nominal dopant concentrations albeit with reduced actual Co2+ incorporation. At a nominal Co2+ concentration of 50%, we observe incorporation of up to seven Co2+ ions within the Cd10 self-assembled cluster compared to a maximum of only four Co2+ dopants in the Cd10 redox clusters. The observation of up to seven Co2+ dopants must involve substitution of at least three core sites within the Cd10 cluster. Electronic absorption spectra of the Co2+ ligand field transition in the heavily doped Co:Cd10 clusters display clear deviation with the surface-doped Co2+-doped Cd10 clusters prepared by the redox method. We hypothesize that the coordination of Co2+ and S2– ions in solution prior to cluster formation, which is possible only with the self-assembly method, is critical to the doping of Co2+ ions within the Cd10 cores. 
    more » « less