skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Phylogeography of Solomon Islands blossom bats reflects oceanic divides and Pleistocene connections
Abstract Aim

Periodic lowering of sea levels and formation of land bridges can reshape phylogeographic patterns of insular biotas. Using archipelago‐wide sampling, we aimed to test if phylogeography of an old‐endemic bat lineage reflected Pleistocene land bridges.

Location

Solomon Islands and Papua New Guinea.

Taxon

MelonycterisandNesonycterisbats (Pteropodidae).

Methods

We sequenced genome‐wide RADseq data for 49 specimens from 15 islands. We assessed phylogenetic relationships using maximum likelihood inRAxMLand quartet‐based methods inSVDquartets, population structure usingStructure, and admixture using maximum likelihood methods inTreeMix. We tested for genetic and geographic distance correlations using distance‐based redundancy analyses (dbRDA), identifying best‐fit models using stepwise model selection.

Results

Phylogenetic analyses identified fiveNesonycterisclades corresponding to Greater Bukida, Guadalcanal, Makira, Malaita and New Georgia group. Makira samples were sister to remainingNesonycteris.Structureidentified four populations: New IrelandMelonycteris melanops; andNesonycterisfrom Greater Bukida (including Guadalcanal); Malaita and Makira; and New Georgia group. Genetic backgrounds of Mono, Ngella and Guadalcanal separated from remaining Greater Bukida islands. Makira and Malaita separated into two populations. New Georgia group lacked structure, and genetic and geographic distances were not correlated. The best‐fit geographic distance models forNesonycterisand a Greater Bukida subset were least shore‐to‐shore distance; and Euclidean and least‐cost distances respectively.

Main Conclusions

Influences of modern and Pleistocene island isolation and connectivity were evident in the overall Phylogeography ofNesonycteris. The lack of structure or geographic distance correlations within the New Georgia group indicated all islands were interconnected during the Last Glacial Maximum or contemporary oceanic divides are ineffective barriers. Conversely, genetic divergence across Greater Bukida islands reflected land‐bridge constrained dispersal. A Makira clade sister to allNesonycterispossibly indicates an origin on Makira. Alternately it reflects Makira's long‐isolated geographic status, as similar results exist for a range of taxa.

 
more » « less
NSF-PAR ID:
10400087
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
50
Issue:
5
ISSN:
0305-0270
Format(s):
Medium: X Size: p. 920-931
Size(s):
["p. 920-931"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    We used genome‐scale sampling to assess the phylogeography of a group of topminnows in theFundulus notatusspecies complex. Two of the species have undergone extensive range expansions resulting in broadly overlapping distributions, and sympatry within drainages has provided opportunities for hybridization and introgression. We assessed the timing and pattern of range expansion in the context of late Pleistocene–Holocene drainage events and evaluated the evidence for introgressive hybridization between species.

    Location

    Central and southern United States including drainages of the Gulf of Mexico Coastal Plain and portions of the Mississippi River drainage in and around the Central Highlands.

    Taxon

    Topminnows, GenusFundulus, subgenusZygonectesFundulus notatus, Fundulus olivaceus, Fundulus euryzonus.

    Methods

    We sampled members of theF. notatusspecies complex throughout their respective ranges, including numerous drainage systems where species co‐occur. We collected genome‐wide single nucleotide polymorphisms (SNPs) using the genotype‐by‐sequencing (GBS) method and subjected data to population genetic analyses to infer the population histories of both species, including explicit tests for admixture and introgression. The methods employed includedSTRUCTURE, principal coordinates analysis, TreeMix and approximate Bayesian computation.

    Results

    Genetic data are presented for 749 individuals sampled from 14F. notatus, 20F. olivaceusand 2F. euryzonuspopulations. Members of the species complex differed in phylogeographic structure, withF. notatusexhibiting geographic clusters corresponding to Pleistocene coastal drainages andF. olivaceuscomparatively lacking in phylogeographic structure. Evidence for interspecific introgression varied by drainage.

    Main conclusions

    Populations ofF. notatusandF. olivaceusexhibited contrasting patterns of lineage diversity among coastal drainages, indicating interspecific differences in their Pleistocene southern refugia. Phylogeographic patterns in both species indicated that range expansions into the northern limits of contemporary distributions coincided with and continued subsequent to the Last Glacial Maximum. There was evidence of introgression between species in some, but not all drainages where the species co‐occur, in a pattern that is correlated with previous estimates of hybridization rates.

     
    more » « less
  2. PREMISE

    A disjunct distribution, where a species’ geographic range is discontinuous, can occur through vicariance or long‐distance dispersal. Approximately 75 North American plant species exhibit a ~650 km disjunction between the Ozark and Appalachian regions. This disjunction is attributed to biogeographic forces including: (1) Eocene–Oligocene vicariance by the formation of the Mississippi embayment; (2) Pleistocene vicariance from interglacial flooding; (3) post‐Pleistocene northward colonization from separate glacial refugia; (4) Hypsithermal vicariance due to climate fluctuations; and (5) recent long‐distance dispersal. We investigated which of these pathways most likely gave rise to the Appalachian‐Ozark disjunction inDelphinium exaltatum.

    METHODS

    We genotyped populations ofD. exaltatumfrom five Ozark and seven Appalachian localities, analyzed genetic structure, tested the order and timing of divergences usingDIYABC, and conducted niche reconstructions up to 21,000 years before present (YBP).

    RESULTS

    Populations fell into five main genetic clusters, i.e., a group in the central Appalachians, and four “lowland” groups. DIYABC analyses showed the central Appalachian and lowland lineages diverging 11,300 to17,000 YBP, and the lowland groups diverging 6800 to 10,900 YBP. Niche reconstructions showed that suitable climate for the central Appalachian lineage experienced large spatial discontinuity starting 14,000 YBP, such that divergence and persistence before this period is less plausible than divergence thereafter.

    CONCLUSIONS

    Our results did not fully support any of the original hypotheses. Rather, the oldest divergence likely occurred after 13,500 YBP through expansion into newly opened habitat in the Appalachians. The Appalachian‐Ozark disjunction likely resulted from northward dispersal of the lowland lineage as climate warmed during the Holocene.

     
    more » « less
  3. Abstract Aim

    Our work seeks to understand the global demographical response of bat species to the climate change that occurred at the Last Glacial Maximum (LGM).

    Location

    All continents except Antarctica.

    Methods

    MitochondrialDNAsequences were sampled from bat species throughout the planet where we could associate a georeferenced sample with a givenDNAsequence. Our investigation estimates the historical demographical response using over 12,000 samples from >300 nominal species of bats. CustomPythonand R scripts were written to aggregate sequence data from GenBank, locality information fromGBIF, and to associate these records to individual samples. We conducted approximate Bayesian computation to calculate the posterior probability of demographical bottleneck and expansion responses to the end of the Pleistocene, and then collected organismal trait data to identify traits that were associated with either demographical response. We also used R to estimate current and end‐Pleistocene species distribution models (SDM) for species where >10 georeferenced samples were available.

    Results

    Analysis of the genetic data indicate that some temperate insectivores responded to the end of the Pleistocene by undergoing a demographical expansion. However, the neotropical family Phyllostomidae experienced the most dramatic response, with many of its species undergoing demographical bottlenecks. Larger bats, and those with shorter forewings, were more likely to undergo a demographical bottleneck. In contrast with the results of the genetic data analysis, the automated SDMs all predicted range expansion since the LGM.

    Main conclusions

    Historical populations of Neotropical bats that rely on Angiosperms for resources (i.e., pollen, nectar, fruit) were negatively influenced by the climate change that occurred at the end of the Pleistocene. Our work highlights the utility of incorporating exploratory trait‐based analyses in phylogeography. It serves as an example of automated big data phylogeography, and suggests that repurposed data can lead to new insights about global biodiversity.

     
    more » « less
  4. Abstract

    Scorpions are an excellent system for understanding biogeographical patterns. Most major scorpion lineages predate modern landforms, making them suitable for testing hypotheses of vicariance and dispersal. The Caribbean islands are endowed with a rich and largely endemic scorpion fauna, the origins of which have not been previously investigated with modern biogeographical methods. Three sets of hypotheses have been proposed to explain present patterns of diversity in the Caribbean: (1) connections via land bridges, (2) vicariance events, and (3) overwater dispersal from continents and among islands. The present study investigates the biogeographical diversification of the New World buthid scorpion subfamily Centruroidinae Kraus, 1955, a clade of seven genera and more than 110 species; infers the ancestral distributions of these scorpions; and tests the relative roles of vicariance and dispersal in the formation of their present distributions. A fossil-calibrated molecular phylogeny was estimated with a Bayesian criterion to infer the dates of diversification events from which ancestral distributions were reconstructed, and the relative likelihood of models of vicariance vs. dispersal, calculated. Although both the timing of diversification and the ancestral distributions were congruent with the GAARlandia land-bridge hypothesis, there was no significant difference between distance-dependent models with or without the land-bridge.HeteroctenusPocock, 1893, the Caribbean-endemic sister taxon ofCentruroidesMarx, 1890 provides evidence for a Caribbean ancestor, which subsequently colonized Central America and North America, and eventually re-colonized the Greater Antilles. This ‘reverse colonization’ event of a continent from an island demonstrates the importance of islands as a potential source of biodiversity.

     
    more » « less
  5. Abstract Aim

    Synthesize literature on genetic structure within species to understand how geographic features and species traits influence past responses to climate change.

    Location

    North America.

    Time Period

    We synthesized phylogeographic studies from 1978 to 2023, which describe genetic lineages that diverged during the Pleistocene (≥11,700 years ago).

    Major Taxa Studied

    Mammals.

    Methods

    We conducted a literature review to map genetic breaks in species distributions, then tested a set of geographic hypotheses (e.g., mountains, rivers) to explain their position by comparing break locations to a grid within each species' sampled range using logistic regression. We then conducted a meta‐analysis using species‐specific model estimates to ask if life‐history traits explained variation in which barriers were most important in species' past response to climate change.

    Results

    Our findings reveal heterogeneity in both where North American mammal phylogeography has been studied and the density of genetic breaks across 229 species. We found relatively high concordance among carnivores, ungulates and lagomorphs, where breaks were associated with mountains, major water bodies and relatively even terrain. In contrast, we found high variability within rodents and shrews, and no evidence that intrinsic factors related to dispersal ability explained the importance of hypothesized barriers across all species.

    Main Conclusions

    Southern Mexico is a hotspot for genetic breaks that has yet to be integrated into the broader story of North American phylogeography. We show that mountains and major water bodies play particularly important roles as barriers, but substantial variation across species within orders suggests that there is more to the story besides shared climatic or phylogenetic histories. Thus, understanding the phylogeography of individual species will continue to be important given that our results suggest high variability in how species may respond to future global change.

     
    more » « less