skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Rearrangement-Based Manipulation via Kinodynamic Planning and Dynamic Planning Horizons
Robot manipulation in cluttered environments of-ten requires complex and sequential rearrangement of multiple objects in order to achieve the desired reconfiguration of the target objects. Due to the sophisticated physical interactions involved in such scenarios, rearrangement-based manipulation is still limited to a small range of tasks and is especially vulnerable to physical uncertainties and perception noise. This paper presents a planning framework that leverages the efficiency of sampling-based planning approaches, and closes the manipulation loop by dynamically controlling the planning horizon. Our approach interleaves planning and execution to progressively approach the manipulation goal while correcting any errors or path deviations along the process. Meanwhile, our framework allows the definition of manipulation goals without requiring explicit goal configurations, enabling the robot to flexibly interact with all objects to facilitate the manipulation of the target ones. With extensive experiments both in simulation and on a real robot, we evaluate our framework on three manipulation tasks in cluttered environments: grasping, relocating, and sorting. In comparison with two baseline approaches, we show that our framework can significantly improve planning efficiency, robustness against physical uncertainties, and task success rate under limited time budgets.  more » « less
Award ID(s):
2133110
PAR ID:
10400130
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the International Conference on Intelligent Robots and Systems
ISSN:
2153-0866
Page Range / eLocation ID:
1145-1152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a framework for planning complex motor actions such as pouring or scooping from arbitrary start states in cluttered real-world scenes. Traditional approaches to such tasks use dynamic motion primitives (DMPs) learned from human demonstrations. We enhance a recently proposed state of- the-art DMP technique capable of obstacle avoidance by including them within a novel hybrid framework. This complements DMPs with sampling-based motion planning algorithms, using the latter to explore the scene and reach promising regions from which a DMP can successfully complete the task. Experiments indicate that even obstacle-aware DMPs suffer in task success when used in scenarios which largely differ from the trained demonstration in terms of the start, goal, and obstacles. Our hybrid approach significantly outperforms obstacle-aware DMPs by successfully completing tasks in cluttered scenes for a pouring task in simulation. We further demonstrate our method on a real robot for pouring and scooping tasks. 
    more » « less
  2. Performing robust goal-directed manipulation tasks remains a crucial challenge for autonomous robots. In an ideal case, shared autonomous control of manipulators would allow human users to specify their intent as a goal state and have the robot reason over the actions and motions to achieve this goal. However, realizing this goal remains elusive due to the problem of perceiving the robot’s environment. We address and describe the problem of axiomatic scene estimation for robot manipulation in cluttered scenes which is the estimation of a tree-structured scene graph describing the configuration of objects observed from robot sensing. We propose generative approaches to scene inference (as the axiomatic particle filter, and the axiomatic scene estimation by Markov chain Monte Carlo based sampler) of the robot’s environment as a scene graph. The result from AxScEs estimation are axioms amenable to goal-directed manipulation through symbolic inference for task planning and collision-free motion planning and execution. We demonstrate the results for goal-directed manipulation of multi-object scenes by a PR2 robot. 
    more » « less
  3. Mechanical search, the finding and extracting of a known target object from a cluttered environment, is a key challenge in automating warehouse, home, retail, and industrial tasks. In this paper, we consider contexts in which occluding objects are to remain untouched, thus minimizing disruptions and avoiding toppling. We assume a 6-DOF robot with an RGBD camera and unicontact suction gripper mounted on its wrist. With this setup, the robot can move both camera and gripper in order to identify a suitable approach vector, reach in to achieve a suction grasp of the target object, and extract it. We present AVPLUG: Approach Vector PLanning for Unicontact Grasping, an algorithm that uses an octree occupancy model and Minkowski sum computation to find a collision-free grasp approach vector. Experiments in simulation and with a physical Fetch robot suggest that AVPLUG finds an approach vector up to 20× faster than a baseline search policy. 
    more » « less
  4. Robotic manipulation problems are inherently continuous, but typically have underlying discrete structure, e.g., whether or not an object is grasped. This means many problems are multi-modal and in particular have a continuous infinity of modes. For example, in a pick-and-place manipulation domain, every grasp and placement of an object is a mode. Usually manipulation problems require the robot to transition into different modes, e.g., going from a mode with an object placed to another mode with the object grasped. To successfully find a manipulation plan, a planner must find a sequence of valid single-mode motions as well as valid transitions between these modes. Many manipulation planners have been proposed to solve tasks with multi-modal structure. However, these methods require mode-specific planners and fail to scale to very cluttered environments or to tasks that require long sequences of transitions. This paper presents a general layered planning approach to multi-modal planning that uses a discrete “lead” to bias search towards useful mode transitions. The difficulty of achieving specific mode transitions is captured online and used to bias search towards more promising sequences of modes. We demonstrate our planner on complex scenes and show that significant performance improvements are tied to both our discrete “lead” and our continuous representation. 
    more » « less
  5. null (Ed.)
    Earlier work has shown that reusing experience from prior motion planning problems can improve the efficiency of similar, future motion planning queries. However, for robots with many degrees-of-freedom, these methods exhibit poor generalization across different environments and often require large datasets that are impractical to gather. We present SPARK and FLAME, two experience-based frameworks for sampling-based planning applicable to complex manipulators in 3D environments. Both combine samplers associated with features from a workspace decomposition into a global biased sampling distribution. SPARK decomposes the environment based on exact geometry while FLAME is more general, and uses an octree-based decomposition obtained from sensor data. We demonstrate the effectiveness of SPARK and FLAME on a real and simulated Fetch robot tasked with challenging pick-and-place manipulation problems. Our approaches can be trained incrementally and significantly improve performance with only a handful of examples, generalizing better over diverse tasks and environments as compared to prior approaches. 
    more » « less