skip to main content


Title: Distinct mechanoreceptor pezo-1 isoforms modulate food intake in the nematode Caenorhabditis elegans
Abstract Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the tissues they are expressed in remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have 12 isoforms. These isoforms share many transmembrane domains but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. We used transcriptional and translational reporters to show that putative promoter sequences immediately upstream of the start codon of long pezo-1 isoforms predominantly drive green fluorescent protein (GFP) expression in mesodermally derived tissues (such as muscle and glands). In contrast, sequences upstream of shorter pezo-1 isoforms resulted in GFP expression primarily in neurons. Putative promoters upstream of different isoforms drove GFP expression in different cells of the same organs of the digestive system. The observed unique pattern of complementary expression suggests that different isoforms could possess distinct functions within these organs. We used mutant analysis to show that pharyngeal muscles and glands require long pezo-1 isoforms to respond appropriately to the presence of food. The number of pezo-1 isoforms in C. elegans, their putative differential pattern of expression, and roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors.  more » « less
Award ID(s):
1828136
NSF-PAR ID:
10400141
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Zetka, M
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
12
Issue:
3
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Two PIEZO mechanosensitive cation channels, PIEZO1 and PIEZO2, have been identified in mammals, where they are involved in numerous sensory processes. While structurally similar, PIEZO channels are expressed in distinct tissues and exhibit unique properties. How different PIEZOs transduce force, how their transduction mechanism varies, and how their unique properties match the functional needs of the distinct tissues where they are expressed remain all-important unanswered questions. The nematode Caenorhabditis elegans has a single PIEZO ortholog (pezo-1) predicted to have twelve isoforms. These isoforms share many transmembrane domains, but differ in those that distinguish PIEZO1 and PIEZO2 in mammals. Here we use translational and transcriptional reporters to show that long pezo-1 isoforms are selectively expressed in mesodermally derived tissues (such as muscle and glands). In contrast, shorter pezo-1 isoforms are primarily expressed in neurons. In the digestive system, different pezo-1 isoforms appear to be expressed in different cells of the same organ. We show that pharyngeal muscles, glands, and valve rely on long pezo-1 isoforms to respond appropriately to the presence of food. The unique pattern of complementary expression of pezo-1 isoforms suggest that different isoforms possess distinct functions. The number of pezo-1 isoforms in C. elegans, their differential pattern of expression, and their roles in experimentally tractable processes make this an attractive system to investigate the molecular basis for functional differences between members of the PIEZO family of mechanoreceptors. 
    more » « less
  2. Abstract

    Ticks are important vectors of pathogenic viruses, bacteria, and protozoans to humans, wildlife, and domestic animals. Due to their life cycles, ticks face significant challenges related to water homeostasis. When blood‐feeding, they must excrete water and ions, but when off‐host (for stretches lasting several months), they must conserve water to avoid desiccation. Aquaporins (AQPs), a family of membrane‐bound water channels, are key players in osmoregulation in many animals but remain poorly characterized in ticks. Here, we bioinformatically identified AQP‐like genes from the deer tickIxodes scapularisand used phylogenetic approaches to map the evolution of the aquaporin gene family in arthropods. Most arachnid AQP‐like sequences (including those ofI. scapularis) formed a monophyletic group clustered within aquaglycerolporins (GLPs) from bacteria to vertebrates. This gene family is absent from insects, revealing divergent evolutionary paths for AQPs in different hematophagous arthropods. Next, we sequenced the full‐length cDNA ofI. scapularisaquaporin 1 (IsAQP1) and expressed it heterologously inXenopusoocytes to functionally characterize its permeability to water and solutes. Additionally, we examinedIsAQP1expression across different life stages and adult female organs. We foundIsAQP1is an efficient water channel with high expression in salivary glands prior to feeding, suggesting it plays a role in osmoregulation before or during blood feeding. Its functional properties are unique: unlike most GLPs,IsAQP1has low glycerol permeability, and unlike most AQPs, it is insensitive to mercury. Together, our results suggestIsAQP1plays an important role in tick water balance physiology and that it may hold promise as a target of novel vector control efforts.

     
    more » « less
  3. Murphy, Coleen T. (Ed.)
    Many tissue-specific stem cells maintain the ability to produce multiple cell types during long periods of non-division, or quiescence. FOXO transcription factors promote quiescence and stem cell maintenance, but the mechanisms by which FOXO proteins promote multipotency during quiescence are still emerging. The single FOXO ortholog in C . elegans , daf-16 , promotes entry into a quiescent and stress-resistant larval stage called dauer in response to adverse environmental cues. During dauer, stem and progenitor cells maintain or re-establish multipotency to allow normal development to resume after dauer. We find that during dauer, daf-16 /FOXO prevents epidermal stem cells (seam cells) from prematurely adopting differentiated, adult characteristics. In particular, dauer larvae that lack daf-16 misexpress collagens that are normally adult-enriched. Using col-19p :: gfp as an adult cell fate marker, we find that all major daf-16 isoforms contribute to opposing col-19p :: gfp expression during dauer. By contrast, daf-16(0) larvae that undergo non-dauer development do not misexpress col-19p :: gfp . Adult cell fate and the timing of col-19p :: gfp expression are regulated by the heterochronic gene network, including lin-41 and lin-29 . lin-41 encodes an RNA-binding protein orthologous to LIN41/TRIM71 in mammals, and lin-29 encodes a conserved zinc finger transcription factor. In non-dauer development, lin-41 opposes adult cell fate by inhibiting the translation of lin-29 , which directly activates col-19 transcription and promotes adult cell fate. We find that during dauer, lin-41 blocks col-19p :: gfp expression, but surprisingly, lin-29 is not required in this context. Additionally, daf-16 promotes the expression of lin-41 in dauer larvae. The col-19p :: gfp misexpression phenotype observed in dauer larvae with reduced daf-16 requires the downregulation of lin-41 , but does not require lin-29 . Taken together, this work demonstrates a novel role for daf-16 /FOXO as a heterochronic gene that promotes expression of lin-41/ TRIM71 to contribute to multipotent cell fate in a quiescent stem cell model. 
    more » « less
  4. Abstract Background Nuclear endosperm development is a common mechanism among Angiosperms, including Arabidopsis. During nuclear development, the endosperm nuclei divide rapidly after fertilization without cytokinesis to enter the syncytial phase, which is then followed by the cellularized phase. The endosperm can be divided into three spatial domains with distinct functions: the micropylar, peripheral, and chalazal domains. Previously, we identified two putative small invertase inhibitors, InvINH1 and InvINH2, that are specifically expressed in the micropylar region of the syncytial endosperm. In addition, ectopically expressing InvINH1 in the cellularized endosperm led to a reduction in embryo growth rate. However, it is not clear what are the upstream regulators responsible for the specific expression of InvINHs in the syncytial endosperm. Results Using protoplast transient expression system, we discovered that a group of type I MADS box transcription factors can form dimers to activate InvINH1 promoter. Promoter deletion assays carried out in the protoplast system revealed the presence of an enhancer region in InvINH1 promoter, which contains several consensus cis-elements for the MADS box proteins. Using promoter deletion assay in planta , we further demonstrated that this enhancer region is required for InvINH1 expression in the syncytial endosperm. One of the MADS box genes, AGL62, is a key transcription factor required for syncytial endosperm development. Using promoter-GFP reporter assay, we demonstrated that InvINH1 and InvINH2 are not expressed in agl62 mutant seeds. Collectively, our data supports the role of AGL62 and other type I MADS box genes as the upstream activators of InvINHs expression in the syncytial endosperm. Conclusions Our findings revealed several type I MADS box genes that are responsible for activating InvINH1 in the syncytial endosperm, which in turn regulates embryo growth rate during early stage of seed development. 
    more » « less
  5. INTRODUCTION Neurons are by far the most diverse of all cell types in animals, to the extent that “cell types” in mammalian brains are still mostly heterogeneous groups, and there is no consensus definition of the term. The Drosophila optic lobes, with approximately 200 well-defined cell types, provides a tractable system with which to address the genetic basis of neuronal type diversity. We previously characterized the distinct developmental gene expression program of each of these types using single-cell RNA sequencing (scRNA-seq), with one-to-one correspondence to the known morphological types. RATIONALE The identity of fly neurons is determined by temporal and spatial patterning mechanisms in stem cell progenitors, but it remained unclear how these cell fate decisions are implemented and maintained in postmitotic neurons. It was proposed in Caenorhabditis elegans that unique combinations of terminal selector transcription factors (TFs) that are continuously expressed in each neuron control nearly all of its type-specific gene expression. This model implies that it should be possible to engineer predictable and complete switches of identity between different neurons just by modifying these sustained TFs. We aimed to test this prediction in the Drosophila visual system. RESULTS Here, we used our developmental scRNA-seq atlases to identify the potential terminal selector genes in all optic lobe neurons. We found unique combinations of, on average, 10 differentially expressed and stably maintained (across all stages of development) TFs in each neuron. Through genetic gain- and loss-of-function experiments in postmitotic neurons, we showed that modifications of these selector codes are sufficient to induce predictable switches of identity between various cell types. Combinations of terminal selectors jointly control both developmental (e.g., morphology) and functional (e.g., neurotransmitters and their receptors) features of neurons. The closely related Transmedullary 1 (Tm1), Tm2, Tm4, and Tm6 neurons (see the figure) share a similar code of terminal selectors, but can be distinguished from each other by three TFs that are continuously and specifically expressed in one of these cell types: Drgx in Tm1, Pdm3 in Tm2, and SoxN in Tm6. We showed that the removal of each of these selectors in these cell types reprograms them to the default Tm4 fate. We validated these conversions using both morphological features and molecular markers. In addition, we performed scRNA-seq to show that ectopic expression of pdm3 in Tm4 and Tm6 neurons converts them to neurons with transcriptomes that are nearly indistinguishable from that of wild-type Tm2 neurons. We also show that Drgx expression in Tm1 neurons is regulated by Klumpfuss, a TF expressed in stem cells that instructs this fate in progenitors, establishing a link between the regulatory programs that specify neuronal fates and those that implement them. We identified an intronic enhancer in the Drgx locus whose chromatin is specifically accessible in Tm1 neurons and in which Klu motifs are enriched. Genomic deletion of this region knocked down Drgx expression specifically in Tm1 neurons, leaving it intact in the other cell types that normally express it. We further validated this concept by demonstrating that ectopic expression of Vsx (visual system homeobox) genes in Mi15 neurons not only converts them morphologically to Dm2 neurons, but also leads to the loss of their aminergic identity. Our results suggest that selector combinations can be further sculpted by receptor tyrosine kinase signaling after neurogenesis, providing a potential mechanism for postmitotic plasticity of neuronal fates. Finally, we combined our transcriptomic datasets with previously generated chromatin accessibility datasets to understand the mechanisms that control brain wiring downstream of terminal selectors. We built predictive computational models of gene regulatory networks using the Inferelator framework. Experimental validations of these networks revealed how selectors interact with ecdysone-responsive TFs to activate a large and specific repertoire of cell surface proteins and other effectors in each neuron at the onset of synapse formation. We showed that these network models can be used to identify downstream effectors that mediate specific cellular decisions during circuit formation. For instance, reduced levels of cut expression in Tm2 neurons, because of its negative regulation by pdm3 , controls the synaptic layer targeting of their axons. Knockdown of cut in Tm1 neurons is sufficient to redirect their axons to the Tm2 layer in the lobula neuropil without affecting other morphological features. CONCLUSION Our results support a model in which neuronal type identity is primarily determined by a relatively simple code of continuously expressed terminal selector TFs in each cell type throughout development. Our results provide a unified framework of how specific fates are initiated and maintained in postmitotic neurons and open new avenues to understanding synaptic specificity through gene regulatory networks. The conservation of this regulatory logic in both C. elegans and Drosophila makes it likely that the terminal selector concept will also be useful in understanding and manipulating the neuronal diversity of mammalian brains. Terminal selectors enable predictive cell fate reprogramming. Tm1, Tm2, Tm4, and Tm6 neurons of the Drosophila visual system share a core set of TFs continuously expressed by each cell type (simplified). The default Tm4 fate is overridden by the expression of a single additional terminal selector to generate Tm1 ( Drgx ), Tm2 ( pdm3 ), or Tm6 ( SoxN ) fates. 
    more » « less