FeII‐ and α‐ketoglutarate‐dependent halogenases and oxygenases can catalyze site‐selective functionalization of C−H bonds via a variety of C−X bond forming reactions, but achieving high chemoselectivity for functionalization using non‐native functional groups remains rare. The current study shows that directed evolution can be used to engineer variants of the dioxygenase SadX that address this challenge. Site‐selective azidation of succinylated amino acids and a succinylated amine was achieved as a result of mutations throughout the SadX structure. The installed azide group was reduced to a primary amine, and the succinyl group required for azidation was enzymatically cleaved to provide the corresponding amine. These results provide a promising starting point for evolving additional SadX variants with activity on structurally distinct substrates and for enabling enzymatic C−H functionalization with other non‐native functional groups.
FeII‐ and α‐ketoglutarate‐dependent halogenases and oxygenases can catalyze site‐selective functionalization of C−H bonds via a variety of C−X bond forming reactions, but achieving high chemoselectivity for functionalization using non‐native functional groups remains rare. The current study shows that directed evolution can be used to engineer variants of the dioxygenase SadX that address this challenge. Site‐selective azidation of succinylated amino acids and a succinylated amine was achieved as a result of mutations throughout the SadX structure. The installed azide group was reduced to a primary amine, and the succinyl group required for azidation was enzymatically cleaved to provide the corresponding amine. These results provide a promising starting point for evolving additional SadX variants with activity on structurally distinct substrates and for enabling enzymatic C−H functionalization with other non‐native functional groups.
more » « less- Award ID(s):
- 1700982
- NSF-PAR ID:
- 10400339
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 15
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C–H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.more » « less
-
Site-selective fluorination of aliphatic C–H bonds remains synthetically challenging. While directed C–H fluorination represents the most promising approach, the limited work conducted to date has enabled just a few functional groups as the arbiters of direction. Leveraging insights gained from both computations and experimentation, we enabled the use of the ubiquitous amine functional group as a handle for the directed C–H fluorination of Csp 3 –H bonds. By converting primary amines to adamantoyl-based fluoroamides, site-selective C–H fluorination proceeds under the influence of a simple iron catalyst in 20 minutes. Computational studies revealed a unique reaction coordinate for the catalytic process and offer an explanation for the high site selectivity.more » « less
-
Abstract Numerous appropriately substituted pyridyl or phenyl groups serve as a particularly advantageous activation motif for the electrochemical oxidation of amines. Such groups enable a general, mild method for the electrochemical α‐functionalization of tertiary amines across numerous activating groups and amine scaffolds. Notably, the method accommodates an unprecedented range of nucleophile classes, allowing for the introduction of diverse functional groups to the readily prepared amine substrates. The utility of this method is then demonstrated through applications to unsymmetrical bisfunctionalization, site‐selective functionalization of
N ‐pyridyl amines vs. other activated amines, a formal synthesis of ivosidenib and the diversification of FDA‐approved drugs or natural product substrates. -
Abstract A mild visible light‐induced palladium‐catalyzed alkyl Heck reaction of diazo compounds and
N ‐tosylhydrazones is reported. A broad range of vinyl arenes and heteroarenes with high functional group tolerance, as well as a range of different diazo compounds, can efficiently undergo this transformation. This method features Brønsted acid‐assisted generation of hybrid palladium C(sp3)‐centered radical intermediate, which allowed for new selective C−H functionalization protocol.