Ecological restoration efforts can increase the diversity and function of degraded areas. However, current restoration practices cannot typically reestablish the full diversity and species composition of remnant plant communities. Restoration quality can be improved by reintroducing key organisms from the native plant microbiome. In particular, root symbionts called arbuscular mycorrhizal (AM) fungi are critical in shaping grassland communities, but are sensitive to anthropogenic disturbance, which may pose a problem for grassland restoration. Studies of mycorrhizal amendments include inoculation densities of 2–10,000 kg of inocula per hectare. These studies report variable results that may depend on inocula volume, composition, or nativeness. Here we test eight different densities of native AM fungal amendment, ranging from 0 to 8,192 kg/ha in a newly installed prairie restoration. We found that native plant establishment benefited from native mycorrhizal inocula, resulting in improvements in native plant abundance, richness, and community diversity. Moreover, the application of very low densities of native mycorrhizal inocula, as suggested on commercial mycorrhizal products, were ineffective, and higher concentrations were required to benefit native plant abundance and community diversity. These data suggest that higher densities of mycorrhizal amendment or perhaps alternative distribution methods may be required to maximize benefits of native mycorrhizal amendments in restoration practices.
more »
« less
Effects of Commercial Arbuscular Mycorrhizal Inoculants on Plant Productivity and Intra-Radical Colonization in Native Grassland: Unintentional De-Coupling of a Symbiosis?
There has been a surge in industries built on the production of arbuscular mycorrhizal (AM) fungal-based inoculants in the past few decades. This is not surprising, given the positive effects of AM fungi on plant growth and nutritional status. However, there is growing concern regarding the quality and efficacy of commercial inoculants. To assess the potential benefits and negative consequences of commercial AM fungal inoculants in grasslands, we conducted a controlled growth chamber study assessing the productivity and AM fungal root colonization of nine grassland plant species grown in grassland soil with or without one of six commercial AM fungal products. Our research showed no evidence of benefit; commercial inoculants never increased native plant biomass, although several inoculants decreased the growth of native species and increased the growth of invasive plant species. In addition, two commercial products contained excessive levels of phosphorus or nitrogen and consistently reduced AM fungal root colonization, indicating an unintentional de-coupling of the symbiosis. As there is little knowledge of the ecological consequences of inoculation with commercial AM fungal products, it is critical for restoration practitioners, scientists, and native plant growers to assess the presence of local AM fungal communities before investing in unnecessary, or possibly detrimental, AM fungal products.
more »
« less
- Award ID(s):
- 1946093
- PAR ID:
- 10400381
- Date Published:
- Journal Name:
- Plants
- Volume:
- 11
- Issue:
- 17
- ISSN:
- 2223-7747
- Page Range / eLocation ID:
- 2276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Arbuscular mycorrhizal (AM) fungi are root symbionts that can facilitate plant growth and influence plant communities by altering plant interactions with herbivores. Therefore, AM fungi could be critical for the conservation of certain rare plants and herbivores. For example, North American milkweed species are crucial hosts for monarch butterflies (Danaus plexippus). Understanding how mycorrhizal composition affects milkweeds will have direct impacts on the conservation and restoration of both increasingly threatened guilds. We present data from three studies on the effect of AM fungal composition on milkweed growth, latex production, and establishment. First, we grew seven milkweed species with and without a mixture of native mycorrhizal fungi. We assessed how important fungal composition is to milkweed growth and latex production by growing four milkweed species with seven fungal compositions, as single‐species inoculations with four native fungi, a mixture of native fungi, a single commercial fungus of presumably non‐native origin, and noninoculated controls. Finally, we assessed the field establishment of two milkweed species with and without native mycorrhizal inoculation. Milkweed species grew 98% larger and produced 82% more latex after inoculation with native mycorrhizae. Milkweeds were strongly affected by fungal composition; milkweeds were inhibited by commercial fungi (average of −14% growth) and showed variable but positive responses to native fungal species (average of +3% to +38% biomass). Finally, we found that restoration establishment was dependent on inoculation with native fungi and milkweed species. Overall, our findings indicate that some milkweed species (i.e.,Asclepias syriacaandA. incarnata) are not responsive to mycorrhizal fungal presence or sensitive to mycorrhizal composition while others are, including endangered species (A. meadii) and species of high conservation value (A. tuberosa). We conclude that the reintroduction of native AM fungi could improve the establishment of desirable milkweed species and should be considered within strategies for plantings for monarch conservation.more » « less
-
Abstract Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.more » « less
-
Biological soil crusts (biocrusts) and arbuscular mycorrhizal (AM) fungi are communities of soil organisms often targeted to assist in the achievement of multiple ecological restoration goals. In drylands, benefits conferred from biocrust and AM fungal inoculation, such as improved native plant establishment and soil stabilization, have primarily been studied separately. However, comparisons between these two types of soil inoculants and investigations into potential synergies between them, particularly at the plant community scale, are needed to inform on‐the‐ground management practices in drylands. We conducted two full‐factorial experiments—one in greenhouse mesocosms and one in field plots—to test the effects of AM fungal inoculation, biocrust inoculation, and their interaction on multiple measures of dryland restoration success. Biocrust inoculation promoted soil stabilization and plant drought tolerance, but had mixed effects on native plant diversity (positive in greenhouse, neutral in field) and productivity (negative in greenhouse, neutral in field). In greenhouse mesocosms, biocrust inoculation reduced plant biomass, which was antagonistic to % root length colonized by AM fungi. Inoculation with native or commercial AM fungi did not influence plant establishment, drought tolerance, or soil stabilization in either study, and few synergistic effects of simultaneous inoculation of AM fungi and biocrusts were observed. These results suggest that, depending on the condition of existing soil communities, inoculation with AM fungi may not be necessary to promote dryland restoration goals, while inoculation with salvaged biocrust inoculation may be beneficial in some contexts.more » « less
-
Perennial polyculture cropping systems are a novel agroecological approach used to mirror some of the ecological benefits provided by native perennial ecosystems including increased carbon and nitrogen storage, more stable soils, and reduced anthropogenic input. Plants selected for perennial agroecosystems are often closely related to native perennials known to be highly dependent on microbiome biota, such as arbuscular mycorrhizal (AM) fungi. However, most plantings take place in highly disturbed soils where tillage and chemical use may have rendered the AM fungal communities less abundant and ineffective. Studies of mycorrhizal amendments include inoculation densities of 2–10,000 kg of inocula per hectare. These studies report variable results that may depend on inocula volume, composition, or nativeness. Here, we test the response of 19 crop plant species to a native mycorrhizal fungal community in a greenhouse and field experiment. In our field experiment, we chose eight different densities of AM fungal amendment, ranging from 0 to 8192 kg/hectare, representing conventional agricultural practices (no AM fungi addition), commercial product density recommendations, and higher densities more typical of past scientific investigation. We found that plant species that benefited from native mycorrhizal inocula in the greenhouse also benefited from inoculation in the field polyculture planting. However, the densities of mycorrhizal inocula suggested on commercial mycorrhizal products were ineffective, and higher concentrations were required to detect significant benefit plant growth and survival. These data suggest that higher concentrations of mycorrhizal amendment or perhaps alternative distribution methods may be required to utilize native mycorrhizal amendment in agroecology systems.more » « less
An official website of the United States government

