skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond PUE: Flexible Datacenters Empowering the Cloud to Decarbonize
Traditional datacenter design and optimization for TCO and PUE is based on static views of power grids as well as computational loads. Power grids exhibit increasingly variable price and carbon-emissions, becoming more so as government initiatives drive further decarbonization. The resulting opportunities require dynamic, temporal metrics (eg. not simple averages), flexible systems and intelligent adaptive control. Two research areas represent new opportunities to reduce both carbon and cost in this world of variable power, carbon, and price. First, the design and optimization of flexible datacenters. Second, cloud resource, power, and application management for variable-capacity datacenters. For each, we describe the challenges and potential benefits.  more » « less
Award ID(s):
2019506 1832230
PAR ID:
10400420
Author(s) / Creator(s):
;
Date Published:
Journal Name:
USENIX Hot Carbon
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cloud providers are adapting datacenter (DC) capacity to reduce carbon emissions. With hyperscale datacenters exceeding 100 MW individually, and in some grids exceeding 15% of power load, DC adaptation is large enough to harm power grid dynamics, increasing carbon emissions, power prices, or reduce grid reliability. To avoid harm, we explore coordination of DC capacity change varying scope in space and time. In space, coordination scope spans a single datacenter, a group of datacenters, and datacenters with the grid. In time, scope ranges from online to day-ahead. We also consider what DC and grid information is used (e.g. real-time and day-ahead average carbon, power price, and compute backlog). For example, in our proposed PlanShare scheme, each datacenter uses day-ahead information to create a capacity plan and shares it, allowing global grid optimization (over all loads, over entire day). We evaluate DC carbon emissions reduction. Results show that local coordination scope fails to reduce carbon emissions significantly (3.2%–5.4% reduction). Expanding coordination scope to a set of datacenters improves slightly (4.9%–7.3%). PlanShare, with grid-wide coordination and full-day capacity planning, performs the best. PlanShare reduces DC emissions by 11.6%–12.6%, 1.56x–1.26x better than the best local, online approach’s results. PlanShare also achieves lower cost. We expect these advantages to increase as renewable generation in power grids increases. Further, a known full-day DC capacity plan provides a stable target for DC resource management. 
    more » « less
  2. The impact of human activity on the climate is a major global challenge that affects human well-being. Buildings are a major source of energy consumption and carbon emissions worldwide, especially in advanced economies such as the United States. As a result, making grids and buildings sustainable by reducing their carbon emissions is emerging as an important step toward societal decarbonization and improving overall human well-being. While prior work on demand response methods in power grids and buildings has targeted peak shaving and price arbitrage in response to price signals, it has not explicitly targeted carbon emission reductions. In this paper, we analyze the flexibility of building loads to quantify the upper limit on their potential to reduce carbon emissions, assuming perfect knowledge of future demand and carbon intensity. Our analysis leverages real-world demand patterns from 1000+ buildings and carbon-intensity traces from multiple regions. It shows that by manipulating the demand patterns of electric vehicles, heating, ventilation, and cooling (HVAC) systems, and battery storage, we can reduce carbon emissions by 26.93% on average and by 54.90% at maximum. Our work advances the understanding of sustainable infrastructure by highlighting the potential for infrastructure design and interventions to significantly reduce carbon footprints, benefiting human well-being. 
    more » « less
  3. Abstract We show for CES demands with heterogeneous productivities that profit, revenue and output distributions lie in the same closed power family as the productivity distribution (e.g., the ‘Pareto circle’). The price distribution lies in the inverse power family. Equilibrium distribution shapes are linked by linear relations between their density elasticities. Introducing product quality decouples the CES circle, and reconciles Pareto price and Pareto sales revenue distributions. We use discrete choice underpinnings to find variable mark-ups for a more flexible demand formulation bridging CES to logit and beyond. For logit demand, exponential (resp. normal) quality-cost distributions generate Pareto (log-normal) economic size distributions. 
    more » « less
  4. The end of Dennard scaling and the slowing of Moore's Law has put the energy use of datacenters on an unsustainable path. Datacenters are already a significant fraction of worldwide electricity use, with application demand scaling at a rapid rate. We argue that substantial reductions in the carbon intensity of datacenter computing are possible with a software-centric approach: by making energy and carbon visible to application developers on a fine-grained basis, by modifying system APIs to make it possible to make informed trade offs between performance and carbon emissions, and by raising the level of application programming to allow for flexible use of more energy efficient means of compute and storage. We also lay out a research agenda for systems software to reduce the carbon footprint of datacenter computing. 
    more » « less
  5. The end of Dennard scaling and the slowing of Moore’s Law has put the energy use of datacenters on an unsustainable path. Datacenters are already a significant fraction of worldwide electricity use, with application demand scaling at a rapid rate. We argue that substantial reductions in the carbon intensity of datacenter computing are possible with a software-centric approach: by making energy and carbon visible to application developers on a fine-grained basis, by modifying system APIs to make it possible to make informed trade offs between performance and carbon emissions, and by raising the level of application programming to allow for flexible use of more energy efficient means of compute and storage.We also lay out a research agenda for systems software to reduce the carbon footprint of datacenter computing. 
    more » « less