skip to main content


Title: Degradation Effects at the Porous Transport Layer/Catalyst Layer Interface in Polymer Electrolyte Membrane Water Electrolyzer

The porous transport layer (PTL)/catalyst layer (CL) interface plays a crucial role in the achievement of high performance and efficiency in polymer electrolyte membrane water electrolyzers (PEMWEs). This study investigated the effects of the PTL/CL interface on the degradation of membrane electrode assemblies (MEAs) during a 4000 h test, comparing the MEAs assembled with uncoated and Ir-coated Ti PTLs. Our results show that compared to an uncoated PTL/CL interface, an optimized interface formed when using a platinum group metal (PGM) coating, i.e., an iridium layer at the PTL/CL interface, and reduced the degradation of the MEA. The agglomeration and formation of voids and cracks could be found for both MEAs after the long-term test, but the incorporation of an Ir coating on the PTL did not affect the morphology change or oxidation of IrOxin the catalyst layer. In addition, our studies suggest that the ionomer loss and restructuring of the anodic MEA can also be reduced by Ir coating of the PTL/CL interface. Optimization of the PTL/CL interface improves the performance and durability of a PEMWE.

 
more » « less
NSF-PAR ID:
10403692
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
170
Issue:
3
ISSN:
0013-4651
Page Range / eLocation ID:
Article No. 034508
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During high current density operation, water production in the polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst layer can negatively affect performance by lowering mass transport of oxygen into the cathode. In this paper, a novel heat treatment process for controlling the ionic polymer/gas interface property of the fuel cell catalyst layer is investigated and then incorporated into the membrane electrode assembly (MEA) fabrication process. XPS characterization of the catalyst layer’s ionomer-gas interface at its outer surface and its sublayers’ surfaces obtained by scraping off successive layers of the catalyst layers confirms that a hydrophobic ionomer interface can be achieved across the catalyst layer using a specific heat treatment condition. Based on the results of the catalyst layer study, the MEA fabrication process is modified to identify heat treatment configuration and conditions that will create an optimal hydrophobic ionomer-gas interface inside the cathode catalyst layer. Finally, fuel cell tests conducted on the conventional and new MEAs under different operating temperatures show the performance of the fuel cells with the treated MEAs was > 130% higher than that with the conventional MEA at 25 °C and 70 °C with humidified air and > 45% higher at 70 °C with dry air. The durability of the hydrophobic treatment on the cathode catalyst layer ionomer is also confirmed by the accelerated stress test. 
    more » « less
  2. In this work we investigate the effect of platinum loading and layer thickness on cathode catalyst degradation by a comprehensive in situ and STEM-EDS characterization. To decouple the effect of the platinum loading and layer thickness from each other, the experiments were categorized in two sets, each with cathode loadings varying between 0.1 and 0.4 mgPtcm−2: (i) Samples with a constant Pt/C ratio and thus varying layer thickness, and (ii) samples with varying Pt/C ratios, achieved by dilution with bare carbon, to maintain a constant layer thickness at different platinum loadings. Every MEA was subjected to an accelerated stress test, where the cell was operated for 45,000 cycles between 0.6 and 0.95 V. Regardless of the Pt/C ratio, a higher relative loss in electrochemically active surface area was measured for lower Pt loadings. STEM-EDS measurements showed that Pt was mainly lost close to the cathode—membrane interface by the concentration driven Pt2+ion flux into the membrane. The size of this Pt-depletion zone has shown to be independent on the overall Pt loading and layer thickness, hence causing higher relative Pt loss in low thickness electrodes, as the depletion zone accounts for a larger fraction of the catalyst layer.

     
    more » « less
  3. The urgent need to address the high-cost issue of proton-exchange membrane fuel cell (PEMFC) technologies, particularly for transportation applications, drives the development of simultaneously highly active and durable platinum group metal-free (PGM-free) catalysts and electrodes. The past decade has witnessed remarkable progress in exploring PGM-free cathode catalysts for the oxygen reduction reaction (ORR) to overcome sluggish kinetics and catalyst instability in acids. Among others, scientists have identified the newly emerging atomically dispersed transition metal (M: Fe, Co, or/and Mn) and nitrogen co-doped carbon (M–N–C) catalysts as the most promising alternative to PGM catalysts. Here, we provide a comprehensive review of significant breakthroughs, remaining challenges, and perspectives regarding the M–N–C catalysts in terms of catalyst activity, stability, and membrane electrode assembly (MEA) performance. A variety of novel synthetic strategies demonstrated effectiveness in improving intrinsic activity, increasing active site density, and attaining optimal porous structures of catalysts. Rationally designing and engineering the coordination environment of single metal MN x sites and their local structures are crucial for enhancing intrinsic activity. Increasing the site density relies on the innovative strategies of restricting the migration and agglomeration of single metal sites into metallic clusters. Relevant understandings provide the correlations among the nature of active sites, nanostructures, and catalytic activity of M–N–C catalysts at the atomic scale through a combination of experimentation and theory. Current knowledge of the transferring catalytic properties of M–N–C catalysts to MEA performance is limited. Rationally designing morphologic features of M–N–C catalysts play a vital role in boosting electrode performance through exposing more accessible active sites, realizing uniform ionomer distribution, and facilitating mass/proton transports. We outline future research directions concerning the comprehensive evaluation of M–N–C catalysts in MEAs. The most considerable challenge of current M–N–C catalysts is the unsatisfied stability and rapid performance degradation in MEAs. Therefore, we further discuss practical methods and strategies to mitigate catalyst and electrode degradation, which is fundamentally essential to make M–N–C catalysts viable in PEMFC technologies. 
    more » « less
  4. Abstract

    The instability of Nickel (Ni)‐rich cathodes at high voltage is a critical bottleneck toward developing superior lithium‐ion batteries. This instability is driven by cathode‐electrolyte side reactions, causing rapid degradation, and compromising the overall cycle life. In this study, a protective coating using dispersed “magnetite (FeO.Fe2O3)” nanoparticles is used to uniformly decorate the surface of LiNi0.8Co0.1Mn0.1O2(NMC 811) microparticles. The modified cathode delivers significant improvement in electrochemical performance at high voltage (≈4.6 V) by suppressing deleterious electrode–electrolyte interactions. A notably higher cycle stability, rate performance, and overall energy density is realized for the coated cathode in a conventional liquid electrolyte battery. When deployed in pellet‐stacked solid‐state cells with Li6PS5Cl as the electrolyte, the magnetite‐coated NMC 811 showed strikingly superior cycling stability than its uncoated counterpart, proving the versatility of the chemistry. The facile surfactant‐assisted coating process developed in this work, in conjunction with the affordability, abundance, and nontoxic nature of magnetite makes this a promising approach to realize commercially viable high voltage Ni‐rich cathodes that exhibit stable performance in liquid as well as solid‐state lithium‐ion batteries.

     
    more » « less
  5. The impact of polyvinylidene fluoride (PVDF) as a binder component on the durability of Pt/C cathodes in a proton exchange membrane fuel cell membrane-electrode-assembly (MEA) during a carbon corrosion accelerated stress test (AST) was examined using electrochemical fuel cell data and visual inspection/analysis of the cathode morphology via electron-microscopy. Electrospun nanofiber cathode mat MEAs with a Nafion®/PVDF or Nafion/poly(acrylic acid) (PAA) binder or a slurry cathode MEA with neat Nafion or a Nafion/PVDF binder were investigated. The presence of PVDF had profound effects on the structure and chemical/electrochemical properties of a fuel cell cathode; its hydrophobic property slowed the rate of carbon loss and its robust mechanical properties added strength to the binder. Thus, the extent of carbon loss during an AST was inversely proportional to the PVDF content of the binder and there was no observable cathode thinning nor any change in cathode porosity after the AST, when the cathode binder contained at least 50 wt% PVDF. In terms of long-term durability, these beneficial structural effects outweighed the lower Nafion/PVDF binder conductivity and the associated lower initial power output of a Nafion/PVDF cathode MEA. For hydrophilic slurry and nanofiber cathodes with neat Nafion or Nafion/PAA fibers, low power after the carbon corrosion AST was due to greater carbon losses, cathode thinning and the collapse of cathode pores, which dominated MEA performance even though the initial cathode ECSA and mass activity were high for these two MEAs.

     
    more » « less