skip to main content


Title: Elastic Moduli: a Tool for Understanding Chemical Bonding and Thermal Transport in Thermoelectric Materials
Abstract

The elastic behavior of a material can be a powerful tool to decipher thermal transport. In thermoelectrics, measuring the elastic moduli—directly tied to sound velocity—is critical to understand trends in lattice thermal conductivity, as well as study bond anharmonicity and phase transitions, given the sensitivity of elastic moduli to the chemical bonding. In this review, we introduce the basics of elasticity and explain the origin of high‐temperature lattice softening from a bonding perspective. We then review elasticity data throughout classes of thermoelectrics, and explore trends in sound velocity, anharmonicity, and thermal conductivity. We reveal how experimental sound velocities can improve the accuracy of common thermal conductivity models and present a critical discussion of Grüneisen parameter estimates from elastic moduli. Readers will be equipped with tools to leverage elasticity measurements or calculations to accurately interpret thermal transport trends.

 
more » « less
PAR ID:
10400527
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
12
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The elastic behavior of a material can be a powerful tool to decipher thermal transport. In thermoelectrics, measuring the elastic moduli—directly tied to sound velocity—is critical to understand trends in lattice thermal conductivity, as well as study bond anharmonicity and phase transitions, given the sensitivity of elastic moduli to the chemical bonding. In this review, we introduce the basics of elasticity and explain the origin of high‐temperature lattice softening from a bonding perspective. We then review elasticity data throughout classes of thermoelectrics, and explore trends in sound velocity, anharmonicity, and thermal conductivity. We reveal how experimental sound velocities can improve the accuracy of common thermal conductivity models and present a critical discussion of Grüneisen parameter estimates from elastic moduli. Readers will be equipped with tools to leverage elasticity measurements or calculations to accurately interpret thermal transport trends.

     
    more » « less
  2. null (Ed.)
    Accurate density functional theory calculations of the interrelated properties of thermoelectric materials entail high computational cost, especially as crystal structures increase in complexity and size. New methods involving ab initio scattering and transport (AMSET) and compressive sensing lattice dynamics are used to compute the transport properties of quaternary CaAl 2 Si 2 -type rare-earth phosphides RECuZnP 2 (RE = Pr, Nd, Er), which were identified to be promising thermoelectrics from high-throughput screening of 20 000 disordered compounds. Experimental measurements of the transport properties agree well with the computed values. Compounds with stiff bulk moduli (>80 GPa) and high speeds of sound (>3500 m s −1 ) such as RECuZnP 2 are typically dismissed as thermoelectric materials because they are expected to exhibit high lattice thermal conductivity. However, RECuZnP 2 exhibits not only low electrical resistivity, but also low lattice thermal conductivity (∼1 W m −1 K −1 ). Contrary to prior assumptions, polar-optical phonon scattering was revealed by AMSET to be the primary mechanism limiting the electronic mobility of these compounds, raising questions about existing assumptions of scattering mechanisms in this class of thermoelectric materials. The resulting thermoelectric performance ( zT of 0.5 for ErCuZnP 2 at 800 K) is among the best observed in phosphides and can likely be improved with further optimization. 
    more » « less
  3. Abstract The lattice thermal conductivity ( κ L ) of the monolayers of partial group-VA elements and binary compounds are systemically investigated by the first-principles calculations and phonon Boltzmann transport equation (PBTE), including aW-antimonene, α -arsenene, black phosphorus, α -SbAs, α -SbP and α -AsP. The κ L values decrease with the increasing of atomic mass for these materials with similar geometry and valence structures. It is ascribed to phonon branches softening, low phonon group velocity, and large Grüneisen parameters. Due to the neutralization of phonon group velocity and phonon lifetime, κ L of binary compounds is between their corresponding elements. As the atomic radius and mass increase, the bond strength and the phonon group velocity decreases. Furthermore, the dimensionless parameter γ 2 / A , which comes from the Slack equation and only has the dependence of Grüneisen parameter, grows up with the atomic mass rising, which indicates that a larger anharmonicity is present in the heavier V-V monolayers. For SbAs and SbP compounds, the thermal conductivity anisotropy mainly results from the anisotropy of elastic coefficients along armchair and zigzag directions. Our results highlight the impact of atomic arrangement on the thermal conductivity of group VA binary compounds. This work paves a way to modulate the thermal conductivity of 2D VA elements by incorporation atoms with suitable mass and may guide to improve thermoelectrical performance via the alloying method. 
    more » « less
  4. Abstract

    The ongoing interest in colloidal nanocrystal solids for electronic and photonic devices necessitates that their thermal‐transport properties be well understood because heat dissipation frequently limits performance in these devices. Unfortunately, colloidal nanocrystal solids generally possess very low thermal conductivities. This very low thermal conductivity primarily results from the weak van der Waals interaction between the ligands of adjacent nanocrystals. We overcome this thermal‐transport bottleneck by crosslinking the ligands to exchange a weak van der Waals interaction with a strong covalent bond. We obtain thermal conductivities of up to 1.7 Wm−1 K−1that exceed prior reported values by a factor of 4. This improvement is significant because the entire range of prior reported values themselves only span a factor of 4 (i.e., 0.1–0.4 Wm−1 K−1). We complement our thermal‐conductivity measurements with mechanical nanoindentation measurements that demonstrate ligand crosslinking increases Young's modulus and sound velocity. This increase in sound velocity is a key bridge between mechanical and thermal properties because sound velocity and thermal conductivity are linearly proportional according to kinetic theory. Control experiments with non‐crosslinkable ligands, as well as transport modeling, further confirm that ligand crosslinking boosts thermal transport.

     
    more » « less
  5. Abstract

    The ongoing interest in colloidal nanocrystal solids for electronic and photonic devices necessitates that their thermal‐transport properties be well understood because heat dissipation frequently limits performance in these devices. Unfortunately, colloidal nanocrystal solids generally possess very low thermal conductivities. This very low thermal conductivity primarily results from the weak van der Waals interaction between the ligands of adjacent nanocrystals. We overcome this thermal‐transport bottleneck by crosslinking the ligands to exchange a weak van der Waals interaction with a strong covalent bond. We obtain thermal conductivities of up to 1.7 Wm−1 K−1that exceed prior reported values by a factor of 4. This improvement is significant because the entire range of prior reported values themselves only span a factor of 4 (i.e., 0.1–0.4 Wm−1 K−1). We complement our thermal‐conductivity measurements with mechanical nanoindentation measurements that demonstrate ligand crosslinking increases Young's modulus and sound velocity. This increase in sound velocity is a key bridge between mechanical and thermal properties because sound velocity and thermal conductivity are linearly proportional according to kinetic theory. Control experiments with non‐crosslinkable ligands, as well as transport modeling, further confirm that ligand crosslinking boosts thermal transport.

     
    more » « less