skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: NiO/β-(Al x Ga 1−x ) 2 O 3 /Ga 2 O 3 heterojunction lateral rectifiers with reverse breakdown voltage >7 kV
NiO/β-(Al x Ga 1− x ) 2 O 3 /Ga 2 O 3 heterojunction lateral geometry rectifiers with diameter 50–100  μm exhibited maximum reverse breakdown voltages >7 kV, showing the advantage of increasing the bandgap using the β-(Al x Ga 1− x ) 2 O 3 alloy. This Si-doped alloy layer was grown by metal organic chemical vapor deposition with an Al composition of ∼21%. On-state resistances were in the range of 50–2180 Ω cm 2 , leading to power figures-of-merit up to 0.72 MW cm −2 . The forward turn-on voltage was in the range of 2.3–2.5 V, with maximum on/off ratios >700 when switching from 5 V forward to reverse biases up to −100 V. Transmission line measurements showed the specific contact resistance was 0.12 Ω cm 2 . The breakdown voltage is among the highest reported for any lateral geometry Ga 2 O 3 -based rectifier.  more » « less
Award ID(s):
1856662
PAR ID:
10400690
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
3
ISSN:
0734-2101
Page Range / eLocation ID:
032701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The switching performance of unpackaged vertical geometry NiO/ β -Ga 2 O 3 rectifiers with a reverse breakdown voltage of 1.76 kV (0.1 cm diameter, 7.85 × 10 −3 cm 2 area) and an absolute forward current of 1.9 A fabricated on 20 μ m thick epitaxial β -Ga 2 O 3 drift layers and a double layer of NiO to optimize breakdown and contact resistance was measured with an inductive load test circuit. The Baliga figure-of-merit of the devices was 261 MW.cm −2 , with differential on-state resistance of 11.86 mΩ.cm 2 . The recovery characteristics for these rectifiers switching from forward current of 1 A to reverse off-state voltage of −550 V showed a measurement-parasitic-limited recovery time (t rr ) of 101 ns, with a peak current value of 1.4 A for switching from 640 V. The reverse recovery time was limited by extrinsic parasitic and thus does not represent the intrinsic device characteristics. There was no significant dependence of t rr on switching voltage or forward current. 
    more » « less
  2. Phase pure β-(Al x Ga 1−x ) 2 O 3 thin films are grown on (001) oriented β-Ga 2 O 3 substrates via metalorganic chemical vapor deposition. By systematically tuning the precursor molar flow rates, the epitaxial growth of coherently strained β-(Al x Ga 1−x ) 2 O 3 films is demonstrated with up to 25% Al compositions as evaluated by high resolution x-ray diffraction. The asymmetrical reciprocal space mapping confirms the growth of coherent β-(Al x Ga 1−x ) 2 O 3 films (x < 25%) on (001) β-Ga 2 O 3 substrates. However, the alloy inhomogeneity with local segregation of Al along the ([Formula: see text]) plane is observed from atomic resolution STEM imaging, resulting in wavy and inhomogeneous interfaces in the β-(Al x Ga 1−x ) 2 O 3 /β-Ga 2 O 3 superlattice structure. Room temperature Raman spectra of β-(Al x Ga 1−x ) 2 O 3 films show similar characteristics peaks as the (001) β-Ga 2 O 3 substrate without obvious Raman shifts for films with different Al compositions. Atom probe tomography was used to investigate the atomic level structural chemistry with increasing Al content in the β-(Al x Ga 1−x ) 2 O 3 films. A monotonous increase in chemical heterogeneity is observed from the in-plane Al/Ga distributions, which was further confirmed via statistical frequency distribution analysis. Although the films exhibit alloy fluctuations, n-type doping demonstrates good electrical properties for films with various Al compositions. The determined valence and conduction band offsets at β-(Al x Ga 1−x ) 2 O 3 /β-Ga 2 O 3 heterojunctions using x-ray photoelectron spectroscopy reveal the formation of type-II (staggered) band alignment. 
    more » « less
  3. In this work, the structural and electrical properties of metalorganic chemical vapor deposited Si-doped β-(Al x Ga 1−x ) 2 O 3 thin films grown on (010) β-Ga 2 O 3 substrates are investigated as a function of Al composition. The room temperature Hall mobility of 101 cm 2 /V s and low temperature peak mobility (T = 65 K) of 1157 cm 2 /V s at carrier concentrations of 6.56 × 10 17 and 2.30 × 10 17  cm −3 are measured from 6% Al composition samples, respectively. The quantitative secondary ion mass spectroscopy (SIMS) characterization reveals a strong dependence of Si and other unintentional impurities, such as C, H, and Cl concentrations in β-(Al x Ga 1−x ) 2 O 3 thin films, with different Al compositions. Higher Al compositions in β-(Al x Ga 1−x ) 2 O 3 result in lower net carrier concentrations due to the reduction of Si incorporation efficiency and the increase of C and H impurity levels that act as compensating acceptors in β-(Al x Ga 1−x ) 2 O 3 films. Lowering the growth chamber pressure reduces Si concentrations in β-(Al x Ga 1−x ) 2 O 3 films due to the increase of Al compositions as evidenced by comprehensive SIMS and Hall characterizations. Due to the increase of lattice mismatch between the epifilm and substrate, higher Al compositions lead to cracking in β-(Al x Ga 1−x ) 2 O 3 films grown on β-Ga 2 O 3 substrates. The (100) cleavage plane is identified as a major cracking plane limiting the growth of high-quality Si-doped (010) β-(Al x Ga 1−x ) 2 O 3 films beyond the critical thicknesses, which leads to highly anisotropic and inhomogeneous behaviors in terms of conductivity. 
    more » « less
  4. Vertical heterojunction NiO/β n-Ga 2 O/n + Ga 2 O 3 rectifiers employing NiO layer extension beyond the rectifying contact for edge termination exhibit breakdown voltages (V B ) up to 4.7 kV with a power figure-of-merits, V B 2 /R ON of 2 GW·cm −2 , where R ON is the on-state resistance (11.3 mΩ cm 2 ). Conventional rectifiers fabricated on the same wafers without NiO showed V B values of 840 V and a power figure-of-merit of 0.11 GW cm −2 . Optimization of the design of the two-layer NiO doping and thickness and also the extension beyond the rectifying contact by TCAD showed that the peak electric field at the edge of the rectifying contact could be significantly reduced. The leakage current density before breakdown was 144 mA/cm 2 , the forward current density was 0.8 kA/cm 2 at 12 V, and the turn-on voltage was in the range of 2.2–2.4 V compared to 0.8 V without NiO. Transmission electron microscopy showed sharp interfaces between NiO and epitaxial Ga 2 O 3 and a small amount of disorder from the sputtering process. 
    more » « less
  5. The in situ metalorganic chemical vapor deposition (MOCVD) growth of Al 2 O 3 dielectrics on β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films is investigated as a function of crystal orientations and Al compositions of β-(Al x Ga 1−x ) 2 O 3 films. The interface and film qualities of Al 2 O 3 dielectrics are evaluated by high-resolution x-ray diffraction and scanning transmission electron microscopy imaging, which indicate the growth of high-quality amorphous Al 2 O 3 dielectrics with abrupt interfaces on (010), (100), and [Formula: see text] oriented β-(Al x Ga 1−x ) 2 O 3 films. The surface stoichiometries of Al 2 O 3 deposited on all orientations of β-(Al x Ga 1−x ) 2 O 3 are found to be well maintained with a bandgap energy of 6.91 eV as evaluated by high-resolution x-ray photoelectron spectroscopy, which is consistent with the atomic layer deposited (ALD) Al 2 O 3 dielectrics. The evolution of band offsets at both in situ MOCVD and ex situ ALD deposited Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 is determined as a function of Al composition, indicating the influence of the deposition method, orientation, and Al composition of β-(Al x Ga 1−x ) 2 O 3 films on resulting band alignments. Type II band alignments are determined at the MOCVD grown Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 interfaces for the (010) and (100) orientations, whereas type I band alignments with relatively low conduction band offsets are observed along the [Formula: see text] orientation. The results from this study on MOCVD growth and band offsets of amorphous Al 2 O 3 deposited on differently oriented β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films will potentially contribute to the design and fabrication of future high-performance β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 based transistors using MOCVD in situ deposited Al 2 O 3 as a gate dielectric. 
    more » « less