skip to main content


Title: Fossil Diatoms Reveal Natural and Anthropogenic History of Jackson Lake (Wyoming, USA)
Jackson Lake supplies valuable cultural and provisioning ecosystem services to the Upper Snake River watershed in Wyoming and Idaho (western USA). Construction of Jackson Lake Dam in the early 20th century raised lake level by ∼12 m, generating an important water resource supporting agriculture and ranching, as well as tourism associated with Grand Teton National Park. Outlet engineering drastically altered Jackson Lake’s surface area, morphology, and relationship with the inflowing Snake River, yet the consequences for nutrient dynamics and algae in the lake are unknown. Here, we report the results of a retrospective environmental assessment completed for Jackson Lake using a paleolimnological approach. Paleoecological (diatoms) and geochemical datasets were developed on a well-dated sediment core and compared with available hydroclimate data from the region, to assess patterns of limnological change. The core spans the termination of the Little Ice Age and extends to the present day (∼1654–2019 CE). Diatom assemblages prior to dam installation are characterized by high relative abundances of plankton that thrive under low nutrient availability, most likely resulting from prolonged seasonal ice cover and perhaps a single, short episode of deep convective mixing. Following dam construction, diatom assemblages shifted to planktic species that favor more nutrient-rich waters. Elemental abundances of sedimentary nitrogen and phosphorous support the interpretation that dam installation resulted in a more mesotrophic state in Jackson Lake after ∼1916 CE. The data are consistent with enhanced nutrient loading associated with dam emplacement, which inundated deltaic wetlands and nearshore vegetation, and perhaps increased water residence times. The results of the study highlight the sensitivity of algal composition and productivity to changes in nutrient status that accompany outlet engineering of natural lakes by humans and have implications for water resource management.  more » « less
Award ID(s):
1932808
NSF-PAR ID:
10400709
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Earth Science, Systems and Society
Volume:
3
ISSN:
2634-730X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dam installation on a deep hydrologically open lake provides the experimental framework necessary to study the influence of outlet engineering and changing base levels on limnogeological processes. Here, high-resolution seismic reflection profiles, sediment cores, and historical water level elevation datasets were employed to assess the recent depositional history of Jackson Lake, a dammed glacial lake located adjacent to the Teton fault in western Wyoming (USA). Prograding clinoforms imaged in the shallow stratigraphy indicate a recent lake-wide episode of delta abandonment. Submerged ∼11–12 m below the lake surface, these Gilbert-type paleo-deltas represent extensive submerged coarse-grained deposits along the axial and lateral margins of Jackson Lake that resulted from shoreline transgression following dam construction in the early 20th century. Other paleo-lake margin environments, including delta plain, shoreline, and glacial (drumlins, moraines) landforms were likewise inundated following dam installation, and now form prominent features on the lake floor. In deepwater, a detailed chronology was established using 137 Cs, 210 Pb, and reservoir-corrected 14 C for a sediment core that spans ∼1654–2019 Common Era (CE). Dam emplacement (1908–1916 CE) correlates with a nearly five-fold acceleration in accumulation rates and a depositional shift towards carbonaceous sediments. Interbedded organic-rich black diatomaceous oozes and tan silts track changes in reservoir water level elevation, which oscillated in response to regional climate and downstream water needs between 1908 and 2019 CE. Chemostratigraphic patterns of carbon, phosphorus, and sulfur are consistent with a change in nutrient status and productivity, controlled initially by transgression-driven flooding of supralittoral soils and vegetation, and subsequently with water level changes. A thin gravity flow deposit punctuates the deepwater strata and provides a benchmark for turbidite characterization driven by hydroclimate change. Because the Teton fault is a major seismic hazard, end-member characterization of turbidites is a critical first step for accurate discrimination of mass transport deposits controlled by earthquakes in more ancient Jackson Lake strata. Results from this study illustrate the influence of dam installation on sublacustrine geomorphology and sedimentation, which has implications for lake management and ecosystem services. Further, this study demonstrates that Jackson Lake contains an expanded, untapped sedimentary archive recording environmental changes in the American West. 
    more » « less
  2. Guangjie Chen (Ed.)
    Abstract

    Hypereutrophic conditions in lake ecosystems are generally associated with nutrient inputs from surrounding terrestrial landscapes. However, some systems can receive primary nutrient inputs through hydrologic connections such as rivers or canals. Lake Carlton, Florida, USA is a small, shallow, polymictic lake that ends a hydrologically connected string of lacustrine systems with hypereutrophic lakes Beauclair and Apopka. Lake Beauclair and Lake Apopka were connected hydrologically when a system of canals was constructed beginning in 1893 CE. These lakes have maintained hypereutrophic conditions despite extensive management to reduce nutrient inputs. Here, we collected a sediment core from Lake Carlton to accomplish two primary research objectives: 1) reconstruct the nutrient input for Lake Carlton throughout the last ~ 150 years to conduct source assessment, and 2) link primary producer changes with management actions between lakes Apopka, Beauclair, and Carlton. Paleolimnological tools were applied to a 165-cm sediment core and analyzed for bulk density, organic matter content, nutrients (C, N, P), photosynthetic pigments, and total microcystins. Sediments were dated using210Pb and results indicate that the core represents over 150 years of sediment accumulation. Sedimentary nutrient concentrations show that the primary driver of nutrient inputs resulted from canal construction, beginning in 1893 CE, which corresponded to increased nutrient deposition. Photosynthetic pigment data indicate dramatic increases in most primary producer groups coinciding with the hydrologic modification. However, around ~ 1970 CE, primary producer communities shifted from diatom dominance to cyanobacterial dominance, which appeared to be linked to internal nutrient dynamics and competition among phytoplankters within the lake ecosystem. Cyanotoxin production records show a significant lag between cyanobacterial dominance and peak cyanotoxin production with toxins increasing in the last 30 years. These data demonstrate that local nutrient inputs do not govern all phytoplankton dynamics in shallow lake systems but must be interpreted considering hydrologic alterations and management practices.

     
    more » « less
  3. A 2,000 year-long oceanographic history, in sub-centennial resolution, from a Canadian Beaufort Sea continental shelf site (60meters water depth) near the Mackenzie River outlet is reconstructed from ostracode and foraminifera faunal assemblages, shell stable isotopes (delta 18O, delta 13C) and sediment biogenic silica. The chronology of three sediment cores making up the composite section was established using 137Cs and 210Pb dating for the most recent 150 years and combined with linear interpolation of radiocarbon dates from bivalve shells and foraminifera tests.Continuous centimeter-sampling of the multicore and high-resolution sampling of a gravity and piston core yielded a time-averaged faunal record of every approximately 40 years from 0 to 1850 CE and every approximately 24 years from 1850 to 2013 CE. Proxy records were consistent with temperature oscillations and related changes in organic carbon cycling associated with the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Abundance changes in dominant microfossil species, such as the ostracode Paracyprideis pseudopunctillata and agglutinated foraminifers Spiroplectammina biformis and S. earlandi, are used as indicators of less saline, and possibly corrosive/turbid bottom conditions associated with the MCA (approximately 800 to 1200 CE) and the most recent approximately 60 years (1950–2013). During these periods, pronounced fluctuations in these species suggest that prolonged seasonal sea-ice melting, changes in riverine inputs and sediment dynamics affected the benthic environment. Taxa analyzed for stable oxygen isotope composition of carbonates show the lowest delta 18O values during intervals within the MCA and the highest during the late LIA, which is consistent with a 1 degree to 2 degree C cooling of bottom waters. Faunal and isotopic changes during the cooler LIA (1300 to 1850 CE) are most apparent at approximately 1500 to 1850 CE and are particularly pronounced during 1850 to approximately 1900 CE, with an approximate 0.5 per mil increase in delta 18O values of carbonates from median values in the analyzed taxa. This very cold 50-year period suggests that enhanced summer sea ice suppressed productivity,which is indicated by low sediment biogenic silica values and lower delta 13C values in analyzed species. From 1900CE to present, declines in calcareous faunal assemblages and changes in dominant species (Cassidulina reniforme and P. pseudopunctillata) are associated with less hospitable bottom waters, indicated by a peak in agglutinated foraminifera from 1950 to 1990 CE.

     
    more » « less
  4. Late Holocene air temperature of the tropical Andean highlands is poorly constrained. Most inferences of past temperature from this region are either qualitatively inferred from environmental proxies such as pollen, moraines, and XRF, or derived from proxies with multiple climatic drivers such as ice core oxygen isotopes. Historical temperature records are either short or nonexistent. Here we present a quantitative reconstruction of air temperature based on branched Glycerol Dialkyl Glycerol Tetraethers (br-GDGTs) derived from sediments of Lake Chacacocha, southeastern Peru (13.96 S, 71.08 W; 4,860 m asl). Chacacocha’s catchment and lake remain above freezing for most of the year. Thus, we interpret calibrated temperatures to reflect mean annual air temperature, though potentially with a bias towards months with more water column mixing. The Chacacocha br-GDGT record suggests a cooling trend after the first millennium, beginning prior to the cooling recorded in global temperature reconstructions. However, a multi-centennial cooling event between 400-600 CE appears to be the strongest centennial-scale cooling of the Common Era, unlike global temperature but in agreement with regional pollen and other paleoenvironmental proxies. The Chacacocha br-GDGT record exhibits striking similarity to a diatom-inferred lake stratification reconstruction and bulk carbon isotopes from the same sediment core, suggesting that the aquatic ecosystem and the surrounding environment responded to air temperature changes. We also compare and contextualize our lacustrine br-GDGT record using br-GDGTs from nearby peatlands and soil, isoprenoid GDGTs from nearby Lake Sibinacocha, and the hydrogen and carbon isotope composition of leaf waxes from the same sediment core. Our results help to illuminate long-term temperature change and its impacts on tropical Andean environments. 
    more » « less
  5. Abstract

    Studying past ecosystems from ancient environmental DNA preserved in lake sediments (sedaDNA) is a rapidly expanding field. This research has mainly involved Holocene sediments from lakes in cool climates, with little known about the suitability ofsedaDNA to reconstruct substantially older ecosystems in the warm tropics. Here, we report the successful recovery of chloroplasttrnL (UAA) sequences (trnL‐P6 loop) from the sedimentary record of Lake Towuti (Sulawesi, Indonesia) to elucidate changes in regional tropical vegetation assemblages during the lake's Late Quaternary paleodepositional history. After the stringent removal of contaminants and sequence artifacts, taxonomic assignment of the remaining genuinetrnL‐P6 reads showed that native nitrogen‐fixing legumes, C3grasses, and shallow wetland vegetation (Alocasia) were most strongly associated with >1‐million‐year‐old (>1 Ma) peats and silts (114–98.8 m composite depth; mcd), which were deposited in a landscape of active river channels, shallow lakes, and peat‐swamps. A statistically significant shift toward partly submerged shoreline vegetation that was likely rooted in anoxic muddy soils (i.e., peatland forest trees and wetland C3grasses (Oryzaceae) and nutrient‐demanding aquatic herbs (presumablyOenanthe javanica)) occurred at 76 mcd (~0.8 Ma), ~0.2 Ma after the transition into a permanent lake. This wetland vegetation was most strongly associated with diatom ooze (46–37 mcd), thought to be deposited during maximum nutrient availability and primary productivity. Herbs (Brassicaceae), trees/shrubs (Fabaceae and Theaceae), and C3grasses correlated with inorganic parameters, indicating increased drainage of ultramafic sediments and laterite soils from the lakes' catchment, particularly at times of inferred drying. Downcore variability intrnL‐P6 from tropical forest trees (Toona), shady ground cover herbs (Zingiberaceae), and tree orchids (Luisia) most strongly correlated with sediments of a predominantly felsic signature considered to be originating from the catchment of the Loeha River draining into Lake Towuti during wetter climate conditions. However, the co‐correlation with dry climate‐adapted trees (i.e.,CastanopsisorLithocarpus) plus C4grasses suggests that increased precipitation seasonality also contributed to the increased drainage of felsic Loeha River sediments. This multiproxy approach shows that despite elevated in situ temperatures, tropical lake sediments potentially comprise long‐term archives of ancient environmental DNA for reconstructing ecosystems, which warrants further exploration.

     
    more » « less