Pseudocapacitors promise to fill the gap between traditional capacitors and batteries by delivering reasonable energy densities and power densities. In this work, pseudocapacitive charge storage properties are demonstrated for two isostructural oxides, Sr2LaFeMnO7and Sr2LaCoMnO7. These materials comprise spatially separated bilayer stacks of corner sharing BO6units (B=Fe, Co or Mn). The spaces between stacks accommodate the lanthanum and strontium ions, and the remaining empty spaces are available for oxide ion intercalation, leading to pseudocapacitive charge storage. Iodometric titrations indicate that these materials do not have oxygen‐vacancies. Therefore, the oxide ion intercalation becomes possible due to their structural features and the availability of interstitial sites between the octahedral stacks. Electrochemical studies reveal that both materials show promising energy density and power density values. Further experiments through fabrication of a symmetric two‐electrode cell indicate that these materials retain their pseudocapacitive performance over hundreds of galvanostatic charge‐discharge cycles, with little degradation even after 1000 cycles.
Herein, the effect of structure on pseudocapacitive properties in alkaline conditions is demonstrated through the investigation of isoelectronic oxides Ca2LaMn2O7and Sr2LaMn2O7, where the difference in ionic radii of Ca2+and Sr2+leads to a change in structure and lattice symmetry, resulting in an orthorhombic
- Award ID(s):
- 1943085
- PAR ID:
- 10401121
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Energy Technology
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2194-4288
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Recently, superconductivity at high temperatures is observed in bulk La3Ni2O7−δunder high pressure. However, the attainment of high‐purity La3Ni2O7−δsingle crystals remains a formidable challenge. Here, the crystal structure and physical properties of single crystals of Sr‐doped La3Ni2O7synthesized at high pressure (20 GPa) and high temperature (1400 °C) are reported. Through single crystal X‐ray diffraction, it is shown that high‐pressure‐synthesized paramagnetic Sr‐doped La3Ni2O7crystallizes in an orthorhombic structure with Ni─O─Ni bond angles of 173.4(2)° out‐of‐plane and 175.0(2)°and 176.7(2)°in plane. The substitution of Sr alters in band filling and the ratio of Ni2+/Ni3+in Sr‐doped La3Ni2O7, aligning them with those of “La3Ni2O7.05”, thereby leading to significant modifications in properties under high pressure relative to the unsubstituted parent phase. At ambient pressure, Sr‐doped La3Ni2O7exhibits insulating properties, and the conductivity increases as pressure goes up to 10 GPa. However, upon further increasing pressure beyond 10.7 GPa, Sr‐doped La3Ni2O7transits back from a metal‐like behavior to an insulator. The insulator–metal–insulator trend under high pressure dramatically differs from the behavior of the parent compound La3Ni2O7−δ, despite their similar behavior in the low‐pressure regime. These experimental results underscore the considerable challenge in achieving superconductivity in nickelates.
-
Abstract Chemical looping air separation (CLAS) is a promising technology for oxygen generation with high efficiency. The key challenge for CLAS is to design robust oxygen sorbents with suitable redox properties and fast redox kinetics. In this work, perovskite-structured Sr1-xCaxFe1-yCoyO3oxygen sorbents were investigated and demonstrated for oxygen production with tunable redox properties, high redox rate, and excellent thermal/steam stability. Cobalt doping at B site was found to be highly effective, 33% improvement in oxygen productivity was observed at 500 °C. Moreover, it stabilizes the perovskite structure and prevents phase segregation under pressure swing conditions in the presence of steam. Scalable synthesis of Sr0.8Ca0.2Fe0.4Co0.6O3oxygen sorbents was carried out through solid state reaction, co-precipitation, and sol-gel methods. Both co-precipitation and sol-gel methods are capable of producing Sr0.8Ca0.2Fe0.4Co0.6O3sorbents with satisfactory phase purity, high oxygen capacity, and fast redox kinetics. Large scale evaluation of Sr0.8Ca0.2Fe0.4Co0.6O3, using an automated CLAS testbed with over 300 g sorbent loading, further demonstrated the effectiveness of the oxygen sorbent to produce 95% pure O2with a satisfactory productivity of 0.04 gO2gsorbent−1h−1at 600 °C.
-
Abstract BaZrO3(BZO) one-dimensional artificial pinning centers (1D-APCs) aligned along the
c -axis of the YBa2Cu3O7(YBCO) have been adopted to enhance the magnetic vortex pinning in BZO/YBCO nanocomposite films. However, the pinning force densityF pof the BZO 1D-APCs remains moderate at temperatures near 77 K. A hypothesis of the major limiting factor is the defective BZO 1D-APCs/YBCO interface as a direct consequence of the large interfacial strain originated from the BZO/YBCO lattice mismatch of ∼7.7%. Herein, we explore enlarging thec -axis of the YBCO dynamically to reduce the lattice mismatch and hence to prevent formation of the defective BZO 1D-APCs/YBCO interface. Specifically, thec- axis enlargement was achieved by partial replacement of Cu with Ca on the YBCO lattice using strain-directed Ca diffusion into YBCO from two Ca0.3Y0.7Ba2Cu3O7− x (CaY-123) spacers of only 10 nm in thickness inserted into the 2 vol% BZO 1D-APC/YBCO nanocomposite thin films of ∼150 nm in total thickness. The achieved elongatedc -axis is attributed to the formation of stacking faults induced by Ca-replacement of Cu on YBCO lattice. The reduced BZO/YBCO lattice mismatch allows formation of a coherent BZO 1D-APC/YBCO interface with negligible defects. This leads to an enhancedF pvalue up to 98 GN m−3at 65 K, which is 70% higher than that of the reference 2 vol% BZO 1D-APC/YBCO sample. Furthermore, the benefit of the enhanced pinning of the BZO 1D-APCs with a coherent interface with YBCO can be extended to a large angular range of the magnetic field orientation. This study reveals the significant effect of the BZO/YBCO interface on the pinning efficiency of BZO 1D-APCs and provides a promising approach to achieve a coherent interface in BZO/YBCO nanocomposite films. -
Abstract Chirality and polarity are the two most important and representative symmetry‐dependent properties. For polar structures, all the twofold axes perpendicular to the principal axis of symmetry should be removed. For chiral structures, all the mirror‐related symmetries and inversion axes should be removed. Especially for duality (polarity and chirality), all of the above symmetries should be broken and that also represents the highest‐level challenge. Herein, a new symmetry‐breaking strategy that employs heteroanionic groups to construct hourglass‐like [Sr3OGeS3]2+and [Sr3SGeS3]2+groups to design and synthesize a new oxychalcogenide Sr18Ge9O5S31with chiral‐polar duality is proposed. The presence of two enantiomers of Sr18Ge9O5S31is confirmed by the single‐crystal X‐ray diffraction. Its optical activity and ferroelectricity are also studied by solid‐state circular dichroism spectroscopy and piezoresponse force microscopy, respectively. Further property measurements show that Sr18Ge9O5S31possesses excellent nonlinear optical properties, including the strong second harmonic generation efficiency (≈2.5 × AGS), large bandgap (3.61 eV), and wide mid‐infrared transparent region (≈15.3 µm). These indicate that the unique microstructure groups of heteroanionic materials are conducive to realizing symmetry‐breaking and are able to provide some inspiration for exploring the chiral‐polar duality materials.