Abstract Pseudocapacitors promise to fill the gap between traditional capacitors and batteries by delivering reasonable energy densities and power densities. In this work, pseudocapacitive charge storage properties are demonstrated for two isostructural oxides, Sr2LaFeMnO7and Sr2LaCoMnO7. These materials comprise spatially separated bilayer stacks of corner sharing BO6units (B=Fe, Co or Mn). The spaces between stacks accommodate the lanthanum and strontium ions, and the remaining empty spaces are available for oxide ion intercalation, leading to pseudocapacitive charge storage. Iodometric titrations indicate that these materials do not have oxygen‐vacancies. Therefore, the oxide ion intercalation becomes possible due to their structural features and the availability of interstitial sites between the octahedral stacks. Electrochemical studies reveal that both materials show promising energy density and power density values. Further experiments through fabrication of a symmetric two‐electrode cell indicate that these materials retain their pseudocapacitive performance over hundreds of galvanostatic charge‐discharge cycles, with little degradation even after 1000 cycles.
more »
« less
Structure Effect on Pseudocapacitive Properties of A 2 LaMn 2 O 7 (A = Ca, Sr)
Herein, the effect of structure on pseudocapacitive properties in alkaline conditions is demonstrated through the investigation of isoelectronic oxides Ca2LaMn2O7and Sr2LaMn2O7, where the difference in ionic radii of Ca2+and Sr2+leads to a change in structure and lattice symmetry, resulting in an orthorhombicCmcmstructure for the former and a tetragonalI4/mmmstructure for the latter. While calcium and strontium do not make a direct contribution to the near‐surface faradaic processes that are essential to the pseudocapacitive properties, their effect on the structure leads to a change in the oxygen intercalation process and the associated pseudocapacitive energy storage. It is shown that Sr2LaMn2O7has a significantly greater specific capacitance than Ca2LaMn2O7. In addition, the former shows a considerably higher‐energy density compared to the latter. Furthermore, these materials show highly stable energy‐storage properties, and retain their specific capacitance over 10 000 cycles of charge–discharge in a symmetric pseudocapacitive cell. Importantly, these findings show the structure–property relationships, where a change in the structure and lattice symmetry can result in a significant change in pseudocapacitive charge–discharge properties in isoelectronic systems.
more »
« less
- Award ID(s):
- 1943085
- PAR ID:
- 10401121
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Energy Technology
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2194-4288
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A local electric field is induced to engineer the interface of vanadium pentoxide nanofibers (V2O5‐NF) to manipulate the charge transport behavior and obtain high‐energy and durable supercapacitors. The interface of V2O5‐NF is modified with oxygen vacancies (Vö) in a one‐step polymerization process of polyaniline (PANI). In the charge storage process, the local electric field deriving from the lopsided charge distribution around Vö will provide Coulombic forces to promote the charge transport in the resultant Vö‐V2O5/PANI nanocable electrode. Furthermore, an ≈7 nm porous PANI coating serves as the external percolated charge transport pathway. As the charge transfer kinetics are synergistically enhanced by the dual modifications, Vö‐V2O5/PANI‐based supercapacitors exhibit an excellent specific capacitance (523 F g−1) as well as a long cycling lifespan (110% of capacitance remained after 20 000 cycles). This work paves an effective way to promote the charge transfer kinetics of electrode materials for next‐generation energy storage systems.more » « less
-
Abstract There is tremendous interest in employing collective excitations of the lattice, spin, charge, and orbitals to tune strongly correlated electronic phenomena. We report such an effect in a ruthenate, Ca3Ru2O7, where two phonons with strong electron-phonon coupling modulate the electronic pseudogap as well as mediate charge and spin density wave fluctuations. Combining temperature-dependent Raman spectroscopy with density functional theory reveals two phonons,B2PandB2M, that are strongly coupled to electrons and whose scattering intensities respectively dominate in the pseudogap versus the metallic phases. TheB2Psqueezes the octahedra along the out of planec-axis, while theB2Melongates it, thus modulating the Ru 4d orbital splitting and the bandwidth of the in-plane electron hopping; Thus,B2Popens the pseudogap, whileB2Mcloses it. Moreover, theB2phonons mediate incoherent charge and spin density wave fluctuations, as evidenced by changes in the background electronic Raman scattering that exhibit unique symmetry signatures. The polar order breaks inversion symmetry, enabling infrared activity of these phonons, paving the way for coherent light-driven control of electronic transport.more » « less
-
The local structure of the highly “overdoped” 95 K superconductor Sr2CuO3.3determined by Cu K X-ray absorption fine structure (XAFS) at 62 K in magnetically oriented samples shows that 1) the magnetization is perpendicular to thecaxis; 2) at these levels of precision the Cu sublattice is tetragonal in agreement with the crystal structure; the O sublattice has 3) continuous -Cu-O- chains that orient perpendicular to an applied magnetic field; 4) approximately half-filled -Cu-O- chains that orient parallel to this field; 5) a substantial number of apical O vacancies; 6) O ions at some apical positions with expanded Cu-O distances; and 7) interstitial positions that imply highly displaced Sr ions. These results contradict the universally accepted features of cuprates that require intact CuO2planes, magnetization along thecaxis, and a termination of the superconductivity when the excess charge on the CuO2Cu ions exceeds 0.27. These radical differences in charge and structure demonstrate that this compound constitutes a separate class of Cu-O–based superconductors in which the superconductivity originates in a different, more complicated structural unit than CuO2planes while retaining exceptionally high transition temperatures.more » « less
-
Abstract The X2MH6family, consisting of an electropositive cation Xn+and a main group metal M octahedrally coordinated by hydrogen, have been identified as promising templates for high‐temperature conventional superconductivity. Herein, we analyze the electronic structure of two members of this family, Mg2IrH6and Ca2IrH6, showing why the former may possess superconducting properties rivaling those of the cuprates, whereas the latter does not. Within Mg2IrH6the vibrations of the anions IrH64−anions are key for the superconducting mechanism, and they induce coupling in the set of orbitals, which are antibonding between the H 1sand the Ir or orbitals. Because calcium possesses low‐lyingd‐orbitals, →Cadback‐donation is preferred, quenching the superconductivity. Our analysis explains why high critical temperatures were only predicted for second or third row X metal atoms, and may provide rules for identifying likely high‐temperature superconductors in other systems where the antibonding anionic states are filled.more » « less