skip to main content

Title: Early evolution and three-dimensional structure of embedded star clusters

We perform simulations of star cluster formation to investigate the morphological evolution of embedded star clusters in the earliest stages of their evolution. We conduct our simulations with Torch, which uses the Amuse framework to couple state-of-the-art stellar dynamics to star formation, radiation, stellar winds, and hydrodynamics in Flash. We simulate a suite of 104 M⊙ clouds at 0.0683 pc resolution for ∼2 Myr after the onset of star formation, with virial parameters α = 0.8, 2.0, 4.0 and different random samplings of the stellar initial mass function and prescriptions for primordial binaries. Our simulations result in a population of embedded clusters with realistic morphologies (sizes, densities, and ellipticities) that reproduce the known trend of clouds with higher initial α having lower star formation efficiencies. Our key results are as follows: (1) Cluster mass growth is not monotonic, and clusters can lose up to half of their mass while they are embedded. (2) Cluster morphology is not correlated with cluster mass and changes over ∼0.01 Myr time-scales. (3) The morphology of an embedded cluster is not indicative of its long-term evolution but only of its recent history: radius and ellipticity increase sharply when a cluster accretes stars. (4) The dynamical evolution of very young embedded clusters with masses ≲1000 M⊙ is dominated by the overall gravitational potential of the star-forming region rather than by internal dynamical processes such as two- or few-body relaxation.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 1338-1352
["p. 1338-1352"]
Sponsoring Org:
National Science Foundation
More Like this

    Most stars form in highly clustered environments within molecular clouds, but eventually disperse into the distributed stellar field population. Exactly how the stellar distribution evolves from the embedded stage into gas-free associations and (bound) clusters is poorly understood. We investigate the long-term evolution of stars formed in the starforge simulation suite – a set of radiation-magnetohydrodynamic simulations of star-forming turbulent clouds that include all key stellar feedback processes inherent to star formation. We use nbody6++gpu to follow the evolution of the young stellar systems after gas removal. We use HDBSCAN to define stellar groups and analyse the stellar kinematics to identify the true bound star clusters. The conditions modeled by the simulations, i.e. global cloud surface densities below 0.15 g cm−2, star formation efficiencies below 15 per cent, and gas expulsion time-scales shorter than a free fall time, primarily produce expanding stellar associations and small clusters. The largest star clusters, which have ∼1000 bound members, form in the densest and lowest velocity dispersion clouds, representing ∼32 and 39 per cent of the stars in the simulations, respectively. The cloud’s early dynamical state plays a significant role in setting the classical star formation efficiency versus bound fraction relation. All stellar groups follow a narrow mass-velocity dispersion power-law relation at 10 Myr with a power-law index of 0.21. This correlation result in a distinct mass–size relationship for bound clusters. We also provide valuable constraints on the gas dispersal time-scale during the star formation process and analyse the implications for the formation of bound systems.

    more » « less

    The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star N-body models of massive (N ∼ 105–107) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 (∼30 per cent) of the YMCs with >6 × 104 M⊙ from Grudić et al. 2022 and integrate them to z = 0 using the cluster Monte Carlo code, CMC. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: Younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that N-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems.

    more » « less
  3. Abstract

    Strong lensing offers a precious opportunity for studying the formation and early evolution of super star clusters that are rare in our cosmic backyard. The Sunburst Arc, a lensed Cosmic Noon galaxy, hosts a young super star cluster with escaping Lyman continuum radiation. Analyzing archival Hubble Space Telescope images and emission line data from Very Large Telescope/MUSE and X-shooter, we construct a physical model for the cluster and its surrounding photoionized nebula. We confirm that the cluster is ≲4 Myr old, is extremely massiveM∼ 107M, and yet has a central component as compact as several parsecs, and we find a gas-phase metallicityZ= (0.22 ± 0.03)Z. The cluster is surrounded by ≳105Mof dense clouds that have been pressurized toP∼ 109K cm−3by perhaps stellar radiation at within 10 pc. These should have large neutral columnsNHI> 1022.8cm−2to survive rapid ejection by radiation pressure. The clouds are likely dusty as they show gas-phase depletion of silicon, and may be conducive to secondary star formation ifNHI> 1024cm−2or if they sink farther toward the cluster center. Detecting strong [Niii]λλ1750,1752, we infer heavy nitrogen enrichmentlog(N/O)=0.210.11+0.10. This requires efficiently retaining ≳500Mof nitrogen in the high-pressure clouds from massive stars heavier than 60Mup to 4 Myr. We suggest a physical origin of the high-pressure clouds from partial or complete condensation of slow massive star ejecta, which may have an important implication for the puzzle of multiple stellar populations in globular clusters.

    more » « less

    We study the formation and early evolution of star clusters that have a wide range of masses and background cloud mass surface densities, Σcloud, which help set the initial sizes, densities, and velocity dispersions of the natal gas clumps. Initial clump masses of 300, 3000, and 30 000 M⊙ are considered, from which star clusters are born with an assumed 50  per cent overall star formation efficiency and with 50  per cent primordial binarity. This formation is gradual, i.e. with a range of star formation efficiencies per free-fall time from 1 to 100  per cent, so that the formation time can range from 0.7 Myr for low-mass, high-Σcloud clumps to ∼30 Myr for high-mass, low-Σcloud clumps. Within this framework of the turbulent clump model, for a given Σcloud, clumps of higher mass are of lower initial volume density, but their dynamical evolution leads to higher bound fractions and causes them to form much higher density cluster cores and maintain these densities for longer periods. This results in systematic differences in the evolution of binary properties, degrees of mass segregation, and rates of creation of dynamically ejected runaways. We discuss the implications of these results for observed star clusters and stellar populations.

    more » « less
  5. ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$10^{10}\, \mathrm{ M}_{\odot }$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $\rm [Z/H]$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies. 
    more » « less