skip to main content


Title: Finite element modeling of meniscal tears using continuum damage mechanics and digital image correlation
Abstract

Meniscal tears are a common, painful, and debilitating knee injury with limited treatment options. Computational models that predict meniscal tears may help advance injury prevention and repair, but first these models must be validated using experimental data. Here we simulated meniscal tears with finite element analysis using continuum damage mechanics (CDM) in a transversely isotropic hyperelastic material. Finite element models were built to recreate the coupon geometry and loading conditions of forty uniaxial tensile experiments of human meniscus that were pulled to failure either parallel or perpendicular to the preferred fiber orientation. Two damage criteria were evaluated for all experiments: von Mises stress and maximum normal Lagrange strain. After we successfully fit all models to experimental force–displacement curves (grip-to-grip), we compared model predicted strains in the tear region at ultimate tensile strength to the strains measured experimentally with digital image correlation (DIC). In general, the damage models underpredicted the strains measured in the tear region, but models using von Mises stress damage criterion had better overall predictions and more accurately simulated experimental tear patterns. For the first time, this study has used DIC to expose strengths and weaknesses of using CDM to model failure behavior in soft fibrous tissue.

 
more » « less
NSF-PAR ID:
10401157
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. How-ever, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effect of anisotropy was independent of the spatial redistribution high compressive stresses due to tissue elastic heterogeneity. Tissue anisotropy and heterogeneity are likely important mechanisms to protect bone from failure and should be included for stress analyses in trabecular bone. 
    more » « less
  2. Abstract

    A novel finite element method (FEM) is developed to study mechanical response of axons embedded in extra cellular matrix (ECM) when subjected to harmonic uniaxial stretch under purely non-affine kinematic boundary conditions. The proposed modeling approach combines hyper-elastic (such as Ogden model) and time/frequency domain viscoelastic constitutive models to evaluate the effect of parametrically varying oligodendrocyte-axon tethering under harmonic stretch at 50Hz. A hybrid hyper-viscoelastic material (HVE) model enabled the analysis of repeated uniaxial load on stress propagation and damage accumulation in white matter.

    In the proposed FEM, oligodendrocyte connections to axons are depicted via a spring-dashpot model. This tethering technique facilitates contact definition at various locations, parameterizes connection points and varies stiffness of connection hubs. Results from a home-grown FE submodel configuration of a single oligodendrocyte tethered to axons at various locations are presented. Root mean square deviation (RMSD) are computed between stress-strain plots to depict trends in mechanical response. Steady-state dynamic (SSD) simulations show stress relaxation in axons. Gradual axonal softening under repetitive loads is illustrated employing Prony series - HVE models. Representative von-Mises stress plots indicate that undulated axons experience bending stresses along their tortuous path, suggesting greater susceptibility to damage accumulation and fatigue failure due to repeated strains.

     
    more » « less
  3. Some configurations of 3D woven composites are known to be susceptible to processing induced damage in the form of microcracks that develop in the polymer matrix during curing. The microcracking is believed to originate from high residual stresses that develop due to a significant mismatch in the coefficients of thermal expansion between the constituent materials. In this paper, we investigate the applicability of several commonly used stress-based failure criteria for glassy polymers – the von Mises, the Bauwens (Drucker-Prager), the parabolic stress, and the dilatational strain energy density. We study the microcracking phenomenon on the example of the one-to-one orthogonal configuration of the epoxy matrix/carbon fiber 3D woven composites. This configuration is characterized by the high level of the throughthickness reinforcement which appears to exacerbate the matrix damage. The investigation is based on a high-fidelity mesoscale finite element model of an orthogonally reinforced 3D woven composite. We simulate the material’s response to the uniform temperature drop from the curing to room temperature and compare the results of the simulation with the X-ray computed microtomography. We conclude that the curing induced matrix failure is well predicted by the parabolic stress criterion with a proper choice of the material constants. Initiation and propagation of this failure are simulated via sequential deactivation of the elements exceeding the allowable equivalent stress. 
    more » « less
  4. There are several possible mechanisms of failure of glassy polymers that can be activated by different states of stress in the material. They are reflected in the various failure criteria used to predict initiation of damage in the polymer based on the components of stress tensor. We investigated the applicability of several popular failure criteria (the von Mises, the Drucker-Prager, the parabolic stress, and the dilatational strain energy density) to predict processing-induced damage due to cooling after curing observed in 3D woven composites with high level of through-thickness reinforcement. We developed high-fidelity mesoscale finite element models of orthogonally reinforced carbon/epoxy composites and predicted their response to the uniform temperature drop from the curing to room temperature. Comparison of the simulation results with the X-ray computed microtomography indicates that matrix failure caused by the difference in thermal expansion coefficients of carbon fiber and epoxy resin is well predicted by the dilatational strain energy criterion. Initiation and propagation of this failure was numerically investigated using sequential deactivation of elements exceeding the allowable equivalent stress. 
    more » « less
  5. Solid-oxide iron-air batteries are an emerging technology for large-scale energy storage, but mechanical degradation of Fe-based storage materials limits battery lifetime. Experimental studies have revealed cycling degradation due to large volume changes during oxidation/reduction (via H2O/H2at 800 °C), but degradation has not yet been correlated with the microstructural stress and strain evolution. Here, we implement a finite element model for oxidation of a Fe lamella to FeO (74% volumetric expansion), in a lamellar Fe foam designed for battery applications. Growth of FeO at the Fe/gas interface is coupled, via an oxidation reaction and solid-state diffusion, with the shrinkage rate of the Fe lamellar core. Using isotropic linear elasticity and plastic hardening, the model simulates deformation of a continuously growing FeO layer by dynamically switching “gas” elements into new “FeO” elements along a sharp FeO/gas interface. As oxidation progresses, the effective plastic strain and von Mises stress increase in FeO. Distribution of tensile and compressive stresses along the Fe/FeO interface are validated by oxidation theory and explain interface delamination, as observed during in operando X-ray tomography experiments. The model explains the superior stability of lamellar vs dendritic foam architectures and the improved redox lifetime of Fe-Ni foams.

     
    more » « less