skip to main content


Title: Phylogenomics of the family Lachesillidae (Insecta: Psocodea: Psocomorpha)
Abstract

Lachesillidae is one of the largest families of bark lice and includes more than 420 described species, in 26 genera and three subfamilies. This family belongs in the suborder Psocomorpha, infraorder Homilopsocidea. The classification of Lachesillidae is based on male and female genital morphologies, but questions remain regarding the monophyly of the family and some of its genera. Here, we used whole genome and transcriptome data to generate a 2060 orthologous gene data matrix of 2,438,763 aligned bp and used these data to reconstruct the phylogenetic relationships of species of Lachesillidae and relatives. Taxon sampling included 24 species from Lachesillidae and 23 additional species belonging to related families from the infraorders Homilopsocidea and Caeciliusetae. Phylogenetic relationships reconstructed with maximum likelihood and coalescent‐based analyses indicated paraphyly of Lachesillidae, and monophyly of the tribe Graphocaeciliini and the genusLachesillawere also never recovered. Instability was observed in the position ofEolachesilla chilensis, which was recovered either as sister to Elipsocidae or to Mesopsocidae species, so we cannot conclusively determine the position of this genus within the Homilopsocidea. Given our results, a reclassification is necessary, but more taxon sampling of other species in Mesopsocidae and Peripsocidae would be useful to add to a tree in future before proposing a new classification.

 
more » « less
NSF-PAR ID:
10401162
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Systematic Entomology
Volume:
48
Issue:
2
ISSN:
0307-6970
Page Range / eLocation ID:
p. 316-327
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The family Mutillidae (Hymenoptera) is a species‐rich group of aculeate wasps that occur worldwide. The higher‐level classification of the family has historically been controversial due, in part, to the extreme sexual dimorphism exhibited by these insects and their morphological similarity to other wasp taxa that also have apterous females. Modern hypotheses on the internal higher classification of Mutillidae have been exclusively based on morphology and, further, they include Myrmosinae as a mutillid subfamily. In contrast, several molecular‐based family‐level studies of Aculeata recovered Myrmosinae as a nonmutillid taxon. To test the validity of these morphology‐based classifications and the phylogenetic placement of the controversial taxon Myrmosinae, a phylogenomic study of Mutillidae was conducted using ultraconserved elements (UCEs). All currently recognized subfamilies and tribes of Mutillidae were represented in this study using 140 ingroup taxa. The maximum likelihood criterion (ML) and the maximum parsimony criterion (MP) were used to infer the phylogenetic relationships within the family and related taxa using an aligned data set of 238,764 characters; the topologies of these respective analyses were largely congruent. The modern higher classification of Mutillidae, based on morphology, is largely congruent with the phylogenomic results of this study at the subfamily level, whereas the tribal classification is poorly supported. The subfamily Myrmosinae was recovered as sister to Sapygidae in the ML analysis and sister to Sapygidae + Pompilidae in the MP analysis; it is consequently raised to the family level, Myrmosidae,stat.nov.The two constituent tribes of Myrmosidae are raised to the subfamily level, Kudakrumiinae,stat.nov., and Myrmosinae,stat.nov.All four recognized tribes of Mutillinae were found to be non‐monophyletic; three additional mutilline clades were recovered in addition to Ctenotillini, Mutillini, Smicromyrmini, and Trogaspidiini sensu stricto. Three new tribes are erected for members of these clades: Pristomutillini Waldren,trib.nov., Psammothermini Waldren,trib.nov., and Zeugomutillini Waldren,trib.nov.All three recognized tribes of Sphaeropthalminae were found to be non‐monophyletic; six additional sphaeropthalmine clades were recovered in addition to Dasymutillini, Pseudomethocini, and Sphaeropthalmini sensu stricto. The subtribe Ephutina of Mutillinae: Mutillini was found to be polyphyletic, with theEphutagenus‐group recovered within Sphaeropthalminae and theOdontomutillagenus‐group recovered as sister to Myrmillinae + Mutillinae. Consequently, the subtribe Ephutina is transferred from Mutillinae: Mutillini and is raised to a tribe within Sphaeropthalminae, Ephutini,stat.nov.Further, the taxon Odontomutillinae,stat.nov., is raised from a synonym of Ephutina to the subfamily level. The sphaeropthalmine tribe Pseudomethocini was found to be polyphyletic, with the subtribe Euspinoliina recovered as a separate clade in Sphaeropthalminae; consequently, Euspinoliina is raised to a tribe, Euspinoliini,stat.nov., in Sphaeropthalminae. The dasylabrine tribe Apteromutillini was recovered within Dasylabrini and is proposed as a new synonym of Dasylabrinae. Finally, dating analyses were conducted to infer the ages of the Pompiloidea families (Mutillidae, Myrmosidae, Pompilidae, and Sapygidae) and the ages of the Mutillidae subfamilies and tribes.

     
    more » « less
  2. null (Ed.)
    Leptonetidae are rarely encountered spiders, usually associated with caves and mesic habitats, and are disjunctly distributed across the Holarctic. Data from ultraconserved elements (UCEs) were used in concatenated and coalescent-based analyses to estimate the phylogenetic history of the family. Our taxon sample included close outgroups, and 90% of described leptonetid genera, with denser sampling in North America and Mediterranean Europe. Two data matrices were assembled and analysed; the first ‘relaxed’ matrix includes the maximum number of loci and the second ‘strict’ matrix is limited to the same set of core orthologs but with flanking introns mostly removed. A molecular dating analysis incorporating fossil and geological calibration points was used to estimate divergence times, and dispersal–extinction–cladogenesis analysis (DEC) was used to infer ancestral distributions. Analysis of both data matrices using maximum likelihood and coalescent-based methods supports the monophyly of Archoleptonetinae and Leptonetinae. However, relationships among Archoleptonetinae, Leptonetinae, and Austrochiloidea are poorly supported and remain unresolved. Archoleptonetinae is elevated to family rank Archoleptonetidae (new rank) and Leptonetidae (new status) is restricted to include only members of the subfamily Leptonetinae; a taxonomic review with morphological diagnoses is provided for both families. Four well supported lineages within Leptonetidae (new status) are recovered: (1) the Calileptoneta group, (2) the Leptoneta group, (3) the Paraleptoneta group, and (4) the Protoleptoneta group. Most genera within Leptonetidae are monophyletic, although Barusia, Cataleptoneta, and Leptoneta include misplaced species and require taxonomic revision. The origin of Archoleptonetidae (new rank), Leptonetidae, and the four main lineages within Leptonetidae date to the Cretaceous. DEC analysis infers the Leptoneta and Paraleptoneta groups to have ancestral distributions restricted to Mediterranean Europe, whereas the Calileptoneta and Protoleptoneta groups include genera with ancestral distributions spanning eastern and western North America, Mediterranean Europe, and east Asia. Based on a combination of biology, estimated divergence times, and inferred ancestral distributions we hypothesise that Leptonetidae was once widespread across the Holarctic and their present distributions are largely the result of vicariance. Given the wide disjunctions between taxa, we broadly interpret the family as a Holarctic relict fauna and hypothesise that they were once part of the Boreotropical forest ecosystem. 
    more » « less
  3. Abstract

    We present a phylogenetic analysis of spiders using a dataset of 932 spider species, representing 115 families (only the family Synaphridae is unrepresented), 700 known genera, and additional representatives of 26 unidentified or undescribed genera. Eleven genera of the orders Amblypygi, Palpigradi, Schizomida and Uropygi are included as outgroups. The dataset includes six markers from the mitochondrial (12S, 16S,COI) and nuclear (histone H3, 18S, 28S) genomes, and was analysed by multiple methods, including constrained analyses using a highly supported backbone tree from transcriptomic data. We recover most of the higher‐level structure of the spider tree with good support, including Mesothelae, Opisthothelae, Mygalomorphae and Araneomorphae. Several of our analyses recover Hypochilidae and Filistatidae as sister groups, as suggested by previous transcriptomic analyses. The Synspermiata are robustly supported, and the families Trogloraptoridae and Caponiidae are found as sister to the Dysderoidea. Our results support the Lost Tracheae clade, including Pholcidae, Tetrablemmidae, Diguetidae, Plectreuridae and the family Pacullidae (restored status) separate from Tetrablemmidae. The Scytodoidea include Ochyroceratidae along with Sicariidae, Scytodidae, Drymusidae and Periegopidae; our results are inconclusive about the separation of these last two families. We did not recover monophyletic Austrochiloidea and Leptonetidae, but our data suggest that both groups are more closely related to the Cylindrical Gland Spigot clade rather than to Synspermiata. Palpimanoidea is not recovered by our analyses, but also not strongly contradicted. We find support for Entelegynae and Oecobioidea (Oecobiidae plus Hersiliidae), and ambiguous placement of cribellate orb‐weavers, compatible with their non‐monophyly. Nicodamoidea (Nicodamidae plus Megadictynidae) and Araneoidea composition and relationships are consistent with recent analyses. We did not obtain resolution for the titanoecoids (Titanoecidae and Phyxelididae), but the Retrolateral Tibial Apophysis clade is well supported. Penestomidae, and probably Homalonychidae, are part of Zodarioidea, although the latter family was set apart by recent transcriptomic analyses. Our data support a large group that we call the marronoid clade (including the families Amaurobiidae, Desidae, Dictynidae, Hahniidae, Stiphidiidae, Agelenidae and Toxopidae). The circumscription of most marronoid families is redefined here. Amaurobiidae include the Amaurobiinae and provisionally Macrobuninae. We transfer Malenellinae (Malenella, from Anyphaenidae), Chummidae (Chumma) (new syn.) and Tasmarubriinae (Tasmarubrius,TasmabrochusandTeeatta, from Amphinectidae) to Macrobuninae. Cybaeidae are redefined to includeCalymmaria,Cryphoeca,EthobuellaandWillisius(transferred from Hahniidae), andBlabommaandYorima(transferred from Dictynidae). Cycloctenidae are redefined to includeOrepukia(transferred from Agelenidae) andPakehaandParavoca(transferred from Amaurobiidae). Desidae are redefined to include five subfamilies: Amphinectinae, withAmphinecta,Mamoea,Maniho,ParamamoeaandRangitata(transferred from Amphinectidae); Ischaleinae, withBakalaandManjala(transferred from Amaurobiidae) andIschalea(transferred from Stiphidiidae); Metaltellinae, withAustmusia,Buyina,Calacadia,Cunnawarra,Jalkaraburra,Keera,Magua,Metaltella,PenaoolaandQuemusia; Porteriinae (new rank), withBaiami,Cambridgea,CorasoidesandNanocambridgea(transferred from Stiphidiidae); and Desinae, withDesis, and provisionallyPoaka(transferred from Amaurobiidae) andBarahna(transferred from Stiphidiidae).Argyronetais transferred from Cybaeidae to Dictynidae.Cicurinais transferred from Dictynidae to Hahniidae. The generaNeoramia(from Agelenidae) andAorangia,MarplesiaandNeolana(from Amphinectidae) are transferred to Stiphidiidae. The family Toxopidae (restored status) includes two subfamilies: Myroinae, withGasparia,Gohia,Hulua,Neomyro,Myro,OmmatauxesisandOtagoa(transferred from Desidae); and Toxopinae, withMidgeeandJamara, formerly Midgeeinae,new syn.(transferred from Amaurobiidae) andHapona,Laestrygones,Lamina,ToxopsandToxopsoides(transferred from Desidae). We obtain a monophyletic Oval Calamistrum clade and Dionycha; Sparassidae, however, are not dionychans, but probably the sister group of those two clades. The composition of the Oval Calamistrum clade is confirmed (including Zoropsidae, Udubidae, Ctenidae, Oxyopidae, Senoculidae, Pisauridae, Trechaleidae, Lycosidae, Psechridae and Thomisidae), affirming previous findings on the uncertain relationships of the “ctenids”AncylometesandCupiennius, although a core group of Ctenidae are well supported. Our data were ambiguous as to the monophyly of Oxyopidae. In Dionycha, we found a first split of core Prodidomidae, excluding the Australian Molycriinae, which fall distantly from core prodidomids, among gnaphosoids. The rest of the dionychans form two main groups, Dionycha part A and part B. The former includes much of the Oblique Median Tapetum clade (Trochanteriidae, Gnaphosidae, Gallieniellidae, Phrurolithidae, Trachelidae, Gnaphosidae, Ammoxenidae, Lamponidae and the Molycriinae), and also Anyphaenidae and Clubionidae.Orthobulais transferred from Phrurolithidae to Trachelidae. Our data did not allow for complete resolution for the gnaphosoid families. Dionycha part B includes the families Salticidae, Eutichuridae, Miturgidae, Philodromidae, Viridasiidae, Selenopidae, Corinnidae and Xenoctenidae(new fam., includingXenoctenus,ParavulsorandOdo, transferred from Miturgidae, as well asIncasoctenusfrom Ctenidae). We confirm the inclusion ofZora(formerly Zoridae) within Miturgidae.

     
    more » « less
  4. Abstract

    We present a time‐calibrated phylogeny of the charismatic green lacewings (Neuroptera: Chrysopidae). Previous phylogenetic studies on the family using DNA sequences have suffered from sparse taxon sampling and/or limited amounts of data. Here we combine all available previously published DNA sequence data and add to it new DNA sequences generated for this study. We analysed these data in a supermatrix using Bayesian and maximum likelihood methods and provide a phylogenetic hypothesis for the family that recovers strong support for the monophyly of all subfamilies and resolves relationships among a large proportion of chrysopine genera. Chrysopinae tribes Leucochrysini and Belonopterygini were recovered as monophyletic sister clades, while the species‐rich tribe Chrysopini was rendered paraphyletic by Ankylopterygini. Relationships among the subfamilies were resolved, although with relatively low statistical support, and the topology varied based on the method of analysis. Greatest support was found for Apochrysinae as sister to Nothochrysinae and Chrysopinae, which is in contrast to traditional concepts that place Nothochrysinae as sister to the rest of the family. Divergence estimates suggest that the stem groups to the various subfamilies diverged during the Triassic‐Jurassic, and that stem groups of the chrysopine tribes diverged during the Cretaceous.

     
    more » « less
  5. null (Ed.)
    The Opiliones superfamily Triaenonychoidea currently includes two families, the monogeneric New Zealand–endemic Synthetonychiidae Forster, 1954 and Triaenonychidae Sørensen, 1886, a diverse family distributed mostly throughout the temperate Gondwanan terranes, with ~110 genera and ~500 species and subspecies currently described. Traditionally, Triaenonychidae has been divided into subfamilies diagnosed by very few morphological characters largely derived from the troublesome ‘Roewerian system’ of morphology, and classifications based on this system led to many complications. Recent research within Triaenonychoidea using morphology and traditional multilocus data has shown multiple deeply divergent lineages, non-monophyly of Triaenonychidae, and non-monophyly of subfamilies, necessitating a revision based on phylogenomic data. We used sequence capture of ultraconserved elements across 164 samples to create a 50% taxon occupancy matrix with 704 loci. Using phylogenomic and morphological examinations, we explored family-level relationships within Triaenonychoidea, including describing two new families: (1) Lomanellidae Mendes & Derkarabetian, fam. nov., consisting of Lomanella Pocock, 1903, and a newly described genus Abaddon Derkarabetian & Baker, gen. nov. with one species, A. despoliator Derkarabetian, sp. nov.; and (2) the elevation to family of Buemarinoidae Karaman, 2019, consisting of Buemarinoa Roewer, 1956, Fumontana Shear, 1977, Flavonuncia Lawrence, 1959, and a newly described genus Turonychus Derkarabetian, Prieto & Giribet, gen. nov., with one species, T. fadriquei Derkarabetian, Prieto & Giribet, sp. nov. With our dataset we also explored phylogenomic relationships within Triaenonychidae with an extensive taxon set including samples representing ~80% of the genus-level diversity. Based on our results we (1) discuss systematics of this family including the historical use of subfamilies, (2) reassess morphology in the context of our phylogeny, (3) hypothesise placement for all unsampled genera, (4) highlight lineages most in need of taxonomic revision, and (5) provide an updated species-level checklist. Aside from describing new taxa, our study provides the phylogenomic context necessary for future evolutionary and systematic research across this diverse lineage.ZooBank Registration: urn:lsid:zoobank.org:pub:81683834-98AB-43AA-B25A-C28C6A404F41 
    more » « less