skip to main content


Title: Fluid Flow Templating of Polymeric Soft Matter with Diverse Morphologies
Abstract

It is challenging to find a conventional nanofabrication technique that can consistently produce soft polymeric matter of high surface area and nanoscale morphology in a way that is scalable, versatile, and easily tunable. Here, the capabilities of a universal method for fabricating diverse nano‐ and micro‐scale morphologies based on polymer precipitation templated by the fluid streamlines in multiphasic flow are explored. It is shown that while the procedure is operationally simple, various combinations of its intertwined mechanisms can controllably and reproducibly lead to the formation of an extraordinary wide range of colloidal morphologies. By systematically investigating the process conditions, 12 distinct classes of polymer micro‐ and nano‐structures including particles, rods, ribbons, nanosheets, and soft dendritic colloids (dendricolloids) are identified. The outcomes are interpreted by delineating the physical processes into three stages: hydrodynamic shear, capillary and mechanical breakup, and polymer precipitation rate. The insights into the underlying fundamental mechanisms provide guidance toward developing a versatile and scalable nanofabrication platform. It is verified that the liquid shear‐based technique is versatile and works well with many chemically diverse polymers and biopolymers, showing potential as a universal tool for simple and scalable nanofabrication of many morphologically distinct soft matter classes.

 
more » « less
Award ID(s):
1825476 2029327 2134664
NSF-PAR ID:
10401171
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
16
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The paper uses inverted glancing angle deposition (I-GLAD) for creating antibacterial surfaces. Antibacterial surfaces are found in nature, such as on insect wings, eyes, and plant leaves. Since the bactericidal mechanism is purely physical for these surfaces, the antimicrobial resistance of bacteria to traditional chemical antibiotics can be overcome. The technical problem is how to mimic, synthesize, and scale up the naturally occurring antibacterial surfaces for practical applications, given the fact that most of those surfaces are composed of three-dimensional hierarchical micro-nano structures. This paper proposes to use I-GLAD as a novel bottom-up nanofabrication technique to scale up bio-inspired nano-structured antibacterial surfaces. Our innovative I-GLAD nanofabrication technique includes traditional GLAD deposition processes alongside the crucial inverting process. Following fabrication, we explore the antibacterial efficacy of I-GLAD surfaces using two types of bacteria:Escherichia coli(E. coli), a gram-negative bacterium, andStaphylococcus aureus(S. aureus), a gram-positive bacterium. Scanning electron microscopy (SEM) shows the small tips and flexibleD/P(feature size over period) ratio of I-GLAD nanoneedles, which is required to achieve the desired bactericidal mechanism. Antibacterial properties of the I-GLAD samples are validated by achieving flat growth curves ofE. coliandS. aureus, and direct observation under SEM. The paper bridges the knowledge gaps of seeding techniques for GLAD, and the control/optimization of the I-GLAD process to tune the morphologies of the nano-protrusions. I-GLAD surfaces are effective against both gram-negative and gram-positive bacteria, and they have tremendous potentials in hospital settings and daily surfaces.

     
    more » « less
  2. null (Ed.)
    The development of synthetic methods for micro/nano materials with precisely controlled structures, morphologies, and local compositions is of great importance for the advancement of modern nanotechnology. The electrospray method is a “platform” approach for the preparation of a broad range of micro-/nanostructures; electrospray is simple and scalable. This review summarizes recent research on the micro-/nanostructures prepared via the electrospray route. These include spherical structures ( e.g. simple, porous, Janus, and core–shell particles), non-spherical structures ( e.g. red blood cell-like and spindle-like particles, multi-compartment microrods, 2D holey nanosheets, and nanopyramids), and assembled structures. The experimental details, underlying physical/chemical principles, and key benefits of these structures are comprehensively discussed. The effects and importance of nozzle design, properties of feeding solutions ( e.g. concentration of solute, polymer additives, solvent/nonsolvent combinations), working environment ( e.g. temperature and humidity), and types of collection media are highlighted. 
    more » « less
  3. Abstract

    The lamination of mechanically stiff structures to elastic materials is prevalent in biological systems and popular in many emerging synthetic systems, such as soft robotics, microfluidics, stretchable electronics, and pop‐up assemblies. The disparate mechanical and chemical properties of these materials have made it challenging to develop universal synthetic procedures capable of reliably adhering to these classes of materials together. Herein, a simple and scalable procedure is described that is capable of covalently laminating a variety of commodity (“off‐the‐shelf”) thermoplastic sheets to silicone rubber films. When combined with laser printing, the nonbonding sites can be “printed” onto the thermoplastic sheets, enabling the direct fabrication of microfluidic systems for actuation and liquid handling applications. The versatility of this approach in generating thin, multifunctional laminates is demonstrated through the fabrication of milliscale soft actuators and grippers with hinged articulation and microfluidic channels with built‐in optical filtering and pressure‐dependent geometries. This method of fabrication offers several advantages, including technical simplicity, process scalability, design versatility, and material diversity. The concepts and strategies presented herein are broadly applicable to the soft robotics, microfluidics, and advanced and additive manufacturing communities where hybrid rubber/plastic structures are prevalent.

     
    more » « less
  4. Shear driven patterning is seen in many soft matter systems. We use rheology and optical microscopy to probe the structures formed when we shear a colloid-polymer mixture containing temperature-sensitive microgel particles. By increasing the temperature, we can increase the particle attraction and transition from liquid-like to gel-like behavior. And by applying shear flow to the sample as the temperature and, hence, state of the system changes, we can affect the morphology of mesoscopic colloidal clusters. We can produce gels comprised of fibrous, elongated colloid-dense clusters, or we can form more isotropic clusters. The rheology is measured and shear-induced flocculation observed for colloid-polymer systems with different cluster morphologies. At shear rates high enough to produce elongated clusters but low enough to not break clusters apart, we observe log-like flocs that are aligned with the vorticity direction and roll between the parallel plates of our rheometer. 
    more » « less
  5. Abstract

    Capillary assembly is a versatile method for depositing colloidal particles within templates, resulting in nano/microarrays and colloidal superstructures for optical, plasmonic, and sensory applications. Liquid particles (LPs), comprised of oligomerized 3‐(trimethoxysilyl)propyl methacrylate, are herein shown to deposit into patterned cavities via capillary assembly. In contrast to solid colloids, LPs coalesce upon solvent evaporation and assume the geometry of the template. Incorporating small molecules such as dyes followed by LP solidification generates fluorescent polymer microarrays of any geometry. The LP size is inversely proportional to the quantity of deposited material and the convexity of the final polymer array. Cavity filling can be tuned by increasing the assembly temperature. Extraction of the polymerized regions produces solidified particles with faceted shapes including square prisms, trapezoids, and ellipsoids with sizes up to 14 µm that retain the shape of the cavity in which they are initially held. LP deposition thus presents a highly controllable fabrication scheme for geometrically diverse polymer microarrays and anisotropic colloids of any conceivable polygonal shape due to space filling of the template. The extension of capillary assembly to LPs that can be doped with small molecule dyes and analytes invaluably expands the synthetic toolbox for top‐down, scalable, hierarchically engineered materials.

     
    more » « less