skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arrested coarsening and large density fluctuations in driven particle mixtures in two dimensions
Abstract Using molecular dynamics simulations, we study a driven, nonadditive binary mixture of spherical particles confined to move in two dimensions and immersed in an explicit solvent consisting of point particles with purely repulsive interactions. We show that, without a drive, the mixture of spherical particles phase separates and coarsens with kinetics consistent with an Ising-like conserved dynamics. Conversely, when the drive is applied, the coarsening is arrested and the system develops large density fluctuations. We show that the drive creates domains of a characteristic size which decreases with an increasing force. Furthermore, we find that these domains are anisotropic and can be oriented either parallel or perpendicular to the drive direction. Finally, we connect our findings to existing theories of strongly-driven systems, pointing out the importance of introducing the explicit solvent particles to break the Galilean invariance of the system.  more » « less
Award ID(s):
2219289
PAR ID:
10401187
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
25
Issue:
3
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 033006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work, the physical phenomenon of the polydisperse micro-particle entrainment process from density mismatch mixture is investigated with the variation of substrate withdrawal speed. A liquid carrier system (LCS) is prepared by a polymer-based binder and an evaporating solvent. Nickel-based inorganic and spherical particles with a. moderate vol%. of 35% are added to the LCS solution. The cylindrical AISI 1006 mild steel wire substrate is dipped at different withdrawal speed ranging from 0.01 mms-1 to 20 mms-1. The binder vol%. is varied between 6.5% and 10.5%. Once the cylindrical substrate is extracted from the mixture, the surface coverage and the particle size are measured following the image analysis technique. The average particle size, coating thickness and the surface packing coverage by the particles are increasing with the higher withdrawal speed of the substrate. We observed relatively low size of particles (< 10 micrometers) as well as low surface coverage (∼33%) when the withdrawal speed remains at 0.01 mm/s. However, with high withdrawal speed (20 mm/s), we found all sizes of particles present on the substrate with a surface coverage of over 90%. The finding of this research will help to understand the high-volume solid transfer technique and develop a novel manufacturing process. 
    more » « less
  2. null (Ed.)
    We introduce a mathematical modeling framework for the conformational dynamics of charged molecules (i.e., solutes) in an aqueous solvent (i.e., water or salted water). The solvent is treated as an incompressible fluid, and its fluctuating motion is described by the Stokes equation with the Landau–Lifschitz stochastic stress. The motion of the solute-solvent interface (i.e., the dielectric boundary) is determined by the fluid velocity together with the balance of the viscous force,hydrostatic pressure, surface tension, solute-solvent van der Waals interaction force, and electrostatic force. The electrostatic interactions are described by the dielectric Poisson–Boltzmann theory.Within such a framework, we derive a generalized Rayleigh–Plesset equation, a nonlinear stochastic ordinary differential equation (SODE), for the radius of a spherical charged molecule, such as anion. The spherical average of the stochastic stress leads to a multiplicative noise. We design and test numerical methods for solving the SODE and use the equation, together with explicit solvent molecular dynamics simulations, to study the effective radius of a single ion. Potentially, our general modeling framework can be used to efficiently determine the solute-solvent interfacial structures and predict the free energies of more complex molecular systems. 
    more » « less
  3. A method of simulating the drying process of a soft matter solution with an implicit solvent model by moving the liquid-vapor interface is applied to various solution films and droplets. For a solution of a polymer and nanoparticles, we observe “polymer-on-top” stratification, similar to that found previously with an explicit solvent model. Furthermore, “polymer-on-top” is found even when the nanoparticle size is smaller than the radius of gyration of the polymer chains. For a suspension droplet of a bidisperse mixture of nanoparticles, we show that core-shell clusters of nanoparticles can be obtained via the “small-on-outside” stratification mechanism at fast evaporation rates. “Large-on-outside” stratification and uniform particle distribution are also observed when the evaporation rate is reduced. Polymeric particles with various morphologies, including Janus spheres, core-shell particles, and patchy particles, are produced from drying droplets of polymer solutions by combining fast evaporation with a controlled interaction between the polymers and the liquid-vapor interface. Our results validate the applicability of the moving interface method to a wide range of drying systems. The limitations of the method are pointed out and cautions are provided to potential practitioners on cases where the method might fail. 
    more » « less
  4. Abstract In manufacturing industries, spherical micro-particles are commonly used as (e.g., brazing powder, metal filler, and 3D printing powder) which are produced with droplet-based particle fabrication techniques. Such processes create spherical morphology but introduce polydispersity and follow a continuous exponential pattern commonly expressed with Rosin-Rammler expression. Sorting those micro-particles in a narrower size range is an important but difficult, costly, and challenging process. Here we demonstrate the successful separation of the particles from a poly-disperse mixture with a particle volume fraction of 10% by dipping process. Nickel-based micro-particles (avg. dia. 5.69 μm) are added in a binder-based liquid carrier system. To encounter the gravitational force, external kinetic energy in the form of agitation is applied to ensure the uniform dispersion of the particles. The cylindrical substrate is prepared and dipped in the ‘pseudo suspension’ to separate the particles by adhering to it. The substrate is dried, and images are taken to characterize the separated particles using image J software. A clear size distribution can be observed which is also plotted. Additionally, a relationship between the process parameter and sorted particles has been established. The proposed method is quick, controllable, and easy to implement, which can be a useful tool for sorting wide-range poly-disperse particles. 
    more » « less
  5. The role of particle shape in evaporation-induced auto-stratification in polydisperse colloidal suspensions is explored with molecular dynamics simulations of mixtures of spheres and aspherical particles. A unified framework based on the competition between diffusion and diffusiophoresis is proposed to understand the effects of shape and size dispersity. In general, particles diffusing more slowly (e.g., larger particles) tend to accumulate more strongly at the evaporation front. However, larger particles have larger surface areas and therefore greater diffusiophoretic mobility. Hence, they are more likely to be driven away from the evaporation front via diffusiophoresis. For a rapidly dried bidisperse suspension containing small and large spheres, the competition leads to “small-on-top” stratification. Here, we employ a computational model in which the diffusion coefficient is inversely proportional to particle mass. For a mixture of spheres and aspherical particles with similar mass, the diffusion contrast is reduced, and the spheres are always enriched at the evaporation front as they have the smallest surface area for a given mass and, therefore, the lowest diffusiophoretic mobility. For a mixture of solid and hollow spheres that have the same outer radius and thus the same surface area, the diffusiophoretic contrast is suppressed, and the system is dominated by diffusion. Consequently, the solid spheres, which have a larger mass and diffuse more slowly, accumulate on top of the hollow spheres. Finally, for a mixture of thin disks and long rods that differ significantly in shape but have similar mass and surface area, both diffusion and diffusiophoresis contrasts are suppressed, and the mixture does not stratify. 
    more » « less