skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How does social media sentiment impact mass media sentiment? A study of news in the financial markets
Award ID(s):
2026583 1939088 1909803 1717473
PAR ID:
10401224
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the Association for Information Science and Technology
Volume:
72
Issue:
9
ISSN:
2330-1635
Page Range / eLocation ID:
1183 to 1197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Candido, Silvio_Eduardo Alvarez (Ed.)
    As social media becomes a key channel for news consumption and sharing, proliferating partisan and mainstream news sources must increasingly compete for users’ attention. While affective qualities of news content may promote engagement, it is not clear whether news source bias influences affective content production or virality, or whether any differences have changed over time. We analyzed the sentiment of ~30 million posts (ontwitter.com) from 182 U.S. news sources that ranged from extreme left to right bias over the course of a decade (2011–2020). Biased news sources (on both left and right) produced more high arousal negative affective content than balanced sources. High arousal negative content also increased reposting for biased versus balanced sources. The combination of increased prevalence and virality for high arousal negative affective content was not evident for other types of affective content. Over a decade, the virality of high arousal negative affective content also increased, particularly in balanced news sources, and in posts about politics. Together, these findings reveal that high arousal negative affective content may promote the spread of news from biased sources, and conversely imply that sentiment analysis tools might help social media users to counteract these trends. 
    more » « less
  2. When COVID-19 first emerged in China, there was speculation that the outbreak would trigger public anger and weaken the Chinese regime. By analyzing millions of social media posts from Sina Weibo made between December 2019 and February 2020, we describe the contours of public, online discussions pertaining to COVID-19 in China. We find that discussions of COVID-19 became widespread on January 20, 2020, consisting primarily of personal reflections, opinions, updates, and appeals. We find that the largest bursts of discussion, which contain simultaneous spikes of criticism and support targeting the Chinese government, coincide with the January 23 lockdown of Wuhan and the February 7 death of Dr. Li Wenliang. Criticisms are directed at the government for perceived lack of action, incompetence, and wrongdoing—in particular, censoring information relevant to public welfare. Support is directed at the government for aggressive action and positive outcomes. As the crisis unfolds, the same events are interpreted differently by different people, with those who criticize focusing on the government’s shortcomings and those who praise focusing on the government’s actions. 
    more » « less
  3. Abstract Public sentiment towards the police is a matter of great interest in the United States, as reports on police misconduct are increasingly being published in mass and social media. Here, we test how the public’s perception of the police can be majorly shaped by media reports of police brutality and local crime. We collect data on media coverage of police brutality and local crime, together with Twitter posts from 2010-2020 about the police in 18 metropolitan areas in the country. Using a range of model-free approaches building on transfer entropy analysis, we discover an association between public sentiment towards the police and media coverage of police brutality. We cautiously interpret this relationship as causal. Through this lens, the public’s sentiment towards the police appears to be driven by media-projected images of police misconduct, with no statistically significant evidence for a comparable effect driven by media reports on crimes. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner. It has in general two sub-tasks: (i) extracting aspects from each review, and (ii) classifying aspect-based reviews by sentiment polarity. In this pa-per, we propose a weakly-supervised approach for aspect-based sentiment analysis, which uses only a few keywords describing each aspect/sentiment without using any labeled examples. Existing methods are either designed only for one of the sub-tasks, neglecting the benefit of coupling both, or are based on topic models that may contain overlapping concepts. We propose to first learn sentiment, aspectjoint topic embeddings in the word embedding space by imposing regularizations to encourage topic distinctiveness, and then use neural models to generalize the word-level discriminative information by pre-training the classifiers with embedding-based predictions and self-training them on unlabeled data. Our comprehensive performance analysis shows that our method generates quality joint topics and outperforms the baselines significantly (7.4%and 5.1% F1-score gain on average for aspect and sentiment classification respectively) on benchmark datasets. 
    more » « less