Abstract Humans exhibit remarkably complex cognitive abilities and adaptive behavior in daily life. Cognitive operation in the " mental workspace, " such as mentally rotating a piece of luggage to fit into fixed trunk space, helps us maintain and manipulate information on a moment-to-moment basis. Skill acquisition in the " sensorimotor workspace, " such as learning a new mapping between the magnitude of new vehicle movement and wheel turn, allows us to adjust our behavior to changing environmental or internal demands to maintain appropriate motor performance. While this cognitive and sensorimotor synergy is at the root of adaptive behavior in the real world, their interplay has been understudied due to a divide-and-conquer approach. We evaluated whether a separate domain-specific or common domain-general operation drives mental and sensorimotor rotational transformations. We observed that participants improved the efficiency of mental rotation speed after the visuomotor rotation training, and their learning rate for visuomotor adaptation also improved after their mental rotation training. Such bidirectional transfer between two widely different tasks highlights the remarkable reciprocal plasticity and demonstrates a common transformation mechanism between two intertwined workspaces. Our findings urge the necessity of an explicitly integrated approach to enhance our understanding of the dynamic interdependence between cognitive and sensorimotor mechanisms.
more »
« less
A model for learning based on the joint estimation of stochasticity and volatility
Abstract Previous research has stressed the importance of uncertainty for controlling the speed of learning, and how such control depends on the learner inferring the noise properties of the environment, especially volatility: the speed of change. However, learning rates are jointly determined by the comparison between volatility and a second factor, moment-to-moment stochasticity. Yet much previous research has focused on simplified cases corresponding to estimation of either factor alone. Here, we introduce a learning model, in which both factors are learned simultaneously from experience, and use the model to simulate human and animal data across many seemingly disparate neuroscientific and behavioral phenomena. By considering the full problem of joint estimation, we highlight a set of previously unappreciated issues, arising from the mutual interdependence of inference about volatility and stochasticity. This interdependence complicates and enriches the interpretation of previous results, such as pathological learning in individuals with anxiety and following amygdala damage.
more »
« less
- Award ID(s):
- 1822571
- PAR ID:
- 10401270
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synaptic unreliability was shown to be a robust and sufficient mechanism for inducing the stochasticity in biological and artificial neural network models. Previous work demonstrated multiplicative noise (also called dropconnect) as a powerful regularizer during training. Here, we show that always-on stochasticity at networks connections is a sufficient resource for deep learning machines when combined with simple threshold non-linearities. Furthermore, the resulting activity function exhibits a self-normalizing property that reflects a recently proposed “Weight Normalization” technique, itself fulfilling many of the features of batch normalization in an online fashion. Normalization of activities during training can speed up convergence by preventing so-called internal covariate shift caused by changes in the distribution of inputs as the parameters of the previous layers are trained. Collectively, our findings can improve performance of deep learning machines with fixed point representations and argue in favor of stochastic nanodevices as primitives for efficient deep learning machines with online and embedded learning capabilities.more » « less
-
Objective: Real-time measurement of biological joint moment could enhance clinical assessments and generalize exoskeleton control. Accessing joint moments outside clinical and laboratory settings requires harnessing non-invasive wearable sensor data for indirect estimation. Previous approaches have been primarily validated during cyclic tasks, such as walking, but these methods are likely limited when translating to non-cyclic tasks where the mapping from kinematics to moments is not unique. Methods: We trained deep learning models to estimate hip and knee joint moments from kinematic sensors, electromyography (EMG), and simulated pressure insoles from a dataset including 10 cyclic and 18 non-cyclic activities. We assessed estimation error on combinations of sensor modalities during both activity types. Results: Compared to the kinematics-only baseline, adding EMG reduced RMSE by 16.9% at the hip and 30.4% at the knee (p<0.05) and adding insoles reduced RMSE by 21.7% at the hip and 33.9% at the knee (p<0.05). Adding both modalities reduced RMSE by 32.5% at the hip and 41.2% at the knee (p<0.05) which was significantly higher than either modality individually (p<0.05). All sensor additions improved model performance on non-cyclic tasks more than cyclic tasks (p<0.05). Conclusion: These results demonstrate that adding kinetic sensor information through EMG or insoles improves joint moment estimation both individually and jointly. These additional modalities are most important during non-cyclic tasks, tasks that reflect the variable and sporadic nature of the real-world. Significance: Improved joint moment estimation and task generalization is pivotal to developing wearable robotic systems capable of enhancing mobility in everyday life.more » « less
-
Nucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie’s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction’s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two.more » « less
-
Andersen, Torben; Chen, Xiaohong (Ed.)This paper introduces a unified approach for modeling high-frequency financial data that can accommodate both the continuous-time jump–diffusion and discrete-time realized GARCH model by embedding the discrete realized GARCH structure in the continuous instantaneous volatility process. The key feature of the proposed model is that the corresponding conditional daily integrated volatility adopts an autoregressive structure, where both integrated volatility and jump variation serve as innovations. We name it as the realized GARCH-Itô model. Given the autoregressive structure in the conditional daily integrated volatility, we propose a quasi-likelihood function for parameter estimation and establish its asymptotic properties. To improve the parameter estimation, we propose a joint quasi-likelihood function that is built on the marriage of daily integrated volatility estimated by high-frequency data and nonparametric volatility estimator obtained from option data. We conduct a simulation study to check the finite sample performance of the proposed methodologies and an empirical study with the S&P500 stock index and option data.more » « less
An official website of the United States government

