skip to main content


Title: Heterogeneous In/Mo cooperative bandgap engineering for promoting visible-light-driven CO 2 photoreduction
Improving the low charge separation efficiency, poor light absorption capacity, and insufficient active sites of photocatalysts are the important challenges for CO 2 photoreduction. In this study, a Mo modified InOOH/In(OH) 3 heterojunction with enhanced CO 2 reduction efficiency was synthesized in situ by using an In(OH) 3 monatomic lamellar material with isolated In atom sites exposed on its surface. And bandgap tuning via the energy levels formed by Mo doping and vacancy defect engineering can simultaneously improve visible light absorption and photogenerated charge separation. The results of experimental characterization and DFT calculation show that the Mo impurity energy levels, O defect energy levels, and surface Mo atoms existing in the InOOH phase can act as an electron transfer ladder in cooperation with the In defect energy levels in the In(OH) 3 phase, thereby promoting electron transfer between heterogeneous interfaces. Under visible light irradiation, the evolution rates of CH 4 and CO of the Mo modified InOOH/In(OH) 3 photocatalyst are more than ∼11 and ∼8 times higher than those of InOOH, respectively. This work provides new insights into the design of the CO 2 photoreduction platform through a collaborative strategy of bandgap tuning, transition metal doping, and heterostructure construction.  more » « less
Award ID(s):
1945558
NSF-PAR ID:
10401395
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
10
Issue:
25
ISSN:
2050-7488
Page Range / eLocation ID:
13393 to 13401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Single‐atom catalysts have demonstrated interesting activity in a variety of applications. In this study, we prepared single Co2+sites on graphitic carbon nitride (C3N4), which was doped with carbon for enhanced activity in visible‐light CO2reduction. The synthesized materials were characterized with a variety of techniques, including microscopy, X‐ray powder diffraction, UV‐vis spectroscopy, infrared spectroscopy, photoluminescence spectroscopy, and X‐ray absorption spectroscopy. Doping C3N4with carbon was found to have profound effect on the photocatalytic activity of the single Co2+sites. At relatively low levels, carbon doping enhanced the photoresponse of C3N4in the visible region and improved charge separation upon photoactivation, thereby enhancing the photocatalytic activity. High levels of carbon doping were found to be detrimental to the photocatalytic activity of the single Co2+sites by altering the structure of C3N4and generating defect sites responsible for charge recombination.

     
    more » « less
  2. Only when the interfacial charge separation is enhanced and the CO 2 activation is improved, can the heterojunction nanocomposite photocatalyst be brought into full play for the CO 2 reduction reaction (CO 2 RR). Here, Er 3+ single atom composite photocatalysts were successfully constructed based on both the special role of Er 3+ single atoms and the special advantages of the SrTiO 3 :Er 3+ /g-C 3 N 4 heterojunction in the field of photocatalysis for the first time. As we expected, the SrTiO 3 :Er 3+ /g-C 3 N 4 (22.35 and 16.90 μmol g −1 h −1 for CO and CH 4 ) exhibits about 5 times enhancement in visible-light photocatalytic activity compared to pure g-C 3 N 4 (4.60 and 3.40 μmol g −1 h −1 for CO and CH 4 ). In particular, the photocatalytic performance of SrTiO 3 :Er 3+ /g-C 3 N 4 is more than three times higher than that of SrTiO 3 /g-C 3 N 4 . From Er 3+ fluorescence quenching measurements, photoelectrochemical studies, transient PL studies and DFT calculations, it is verified that a small fraction of surface doping of Er 3+ formed Er single-atoms on SrTiO 3 building an energy transfer bridge between the interface of SrTiO 3 and g-C 3 N 4 , resulting in enhanced interfacial charge separation. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and adsorption energy calculations demonstrated that the exposed Er single-atoms outside the interface on SrTiO 3 preferentially activate the adsorbed CO 2 , leading to the high photoactivity for the CO 2 RR. A novel enhanced photocatalytic mechanism was proposed, in which Er single-atoms play dual roles of an energy transfer bridge and activating CO 2 to promote charge separation. This provides new insights and feasible routes to develop highly efficient photocatalytic materials by engineering rare-earth single-atom doping. 
    more » « less
  3. null (Ed.)
    Controlled energy transfer has been found to be one of the most effective ways of designing tunable and white photoluminescent phosphors. Utilizing host emission to achieve the same would lead to a new dimension in the design strategy for novel luminescent materials in solid state lighting and display devices. In this work, we have achieved controlled energy transfer by suppressing the host to dopant energy transfer in La 2 Hf 2 O 7 :Eu 3+ nanoparticles (NPs) by co-doping with uranium ions. Uranium acts as a barrier between the oxygen vacancies of the La 2 Hf 2 O 7 host and Eu 3+ doping ions to increase their separation and reduce the non-radiative energy transfer between them. Density functional theory (DFT) calculations of defect formation energy showed that the Eu 3+ dopant occupies the La 3+ site and the uranium ion occupies the Hf 4+ site. Co-doping the La 2 Hf 2 O 7 :Eu 3+ NPs with uranium ions creates negatively charged lanthanum and hafnium vacancies making the system highly electron rich. Formation of cation vacancies is expected to compensate the excess charge in the U and Eu co-doped La 2 Hf 2 O 7 NPs suppressing the formation of oxygen vacancies. This work shows how one can utilize the full color gamut in the La 2 Hf 2 O 7 :Eu 3+ ,U 6+ NPs with blue, green and red emissions from the host, uranium and europium, respectively, to produce near perfect white light emission. 
    more » « less
  4. Abstract

    The effect of rare earth (RE) single atoms on photocatalytic activity is very complex due to its special electronic configuration, which leads to few reports on the RE single atoms. Here, Dy3+single atom composite photocatalysts are successfully constructed based on both the special role of Dy3+and the special advantages of CdS/g‐C3N4heterojunction in the field of photocatalysis. The results show that an efficient way of electron transfer is provided to promote charge separation, and the dual functions of CO2molecular activation of rare‐earth single atom and 4flevels as electron transport bridge are fully exploited. It is exciting that under visible‐light irradiation, the catalytic performance of CdS:Dy3+/g‐C3N4is6.9 times higher than that of pure g‐C3N4. The catalytic performance of CdS:Dy3+and CdS:Dy3+/g‐C3N4are7 and13.7 times higher than those of pure CdS, respectively. Besides, not all RE ions are suitable for charge transfer bridges, which is not only related to the 4flevels of RE ions but also related to the bandgap structure of CdS and g‐C3N4. The pattern of combining single‐atom catalysis and heterojunction opens up new methods for enhancing photocatalytic activity.

     
    more » « less
  5. CuBiW 2 O 8 (CBTO), with a band gap of 1.9–2.0 eV, responds to a wide region of the electromagnetic spectrum, which makes it a good candidate for solar-driven photocatalytic energy conversion and water treatment. We have previously demonstrated a Cu-rich solid state approach that enables the synthesis of CBTO accompanied by thermodynamically stable Bi 2 WO 6 impurity. Here, we describe an improved synthesis protocol with decreased impurity and synthesis time, and the first demonstration of CBTO as a functional material using photocatalytic Cr( vi ) photoreduction as a probe reaction. Transient absorption spectroscopy (TAS) was performed to investigate the ultrafast dynamics of the charge carriers after photoexcitation. The presence of two populations of photoexcited carriers was found, including short-lived free carriers with ∼10 ps lifetime and long-lived shallowly-trapped carriers with ∼1 ns lifetime. Together with carrier mobilities measured in our previous study, the new TAS results indicate that the long-lived charges have diffusion lengths similar to the CBTO particle size and were likely responsible for the majority of the photocatalytic activity. High activity of CBTO for Cr( vi ) photoreduction (∼100% reduction of 5 mg L −1 of Cr( vi ) in 15 minutes) was demonstrated, which clearly establishes the promise of this novel oxide for visible light-driven photocatalytic applications. Radical quenching experiments indicate that both ˙OH radicals and O 2 ˙ − radicals are produced by CBTO and are involved in the photoreduction of Cr( vi ). Repeated photocatalysis tests and analysis of the surface after the reaction show that CBTO is a stable and potentially reusable catalyst. Insights gained from correlating the synthesis conditions, carrier dynamics, and reactive species suggests that CBTO prepared with the improved protocol would be a favorable choice for photocatalytic reactions such as water decontamination from organic pollutants, water splitting, and solar fuel generation using visible light. 
    more » « less