skip to main content


Title: Uncertainty Quantification and Exploration for Reinforcement Learning
We investigate statistical uncertainty quantification for reinforcement learning (RL) and its implications in exploration policy. Despite ever-growing literature on RL applications, fundamental questions about inference and error quantification, such as large-sample behaviors, appear to remain quite open. In this paper, we fill in the literature gap by studying the central limit theorem behaviors of estimated Q-values and value functions under various RL settings. In particular, we explicitly identify closed-form expressions of the asymptotic variances, which allow us to efficiently construct asymptotically valid confidence regions for key RL quantities. Furthermore, we utilize these asymptotic expressions to design an effective exploration strategy, which we call Q-value-based Optimal Computing Budget Allocation (Q-OCBA). The policy relies on maximizing the relative discrepancies among the Q-value estimates. Numerical experiments show superior performances of our exploration strategy than other benchmark policies. Funding: This work was supported by the National Science Foundation (1720433).  more » « less
Award ID(s):
1720433
NSF-PAR ID:
10401412
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Operations Research
ISSN:
0030-364X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Offline or batch reinforcement learning seeks to learn a near-optimal policy using history data without active exploration of the environment. To counter the insufficient coverage and sample scarcity of many offline datasets, the principle of pessimism has been recently introduced to mitigate high bias of the estimated values. While pessimistic variants of model-based algorithms (e.g., value iteration with lower confidence bounds) have been theoretically investigated, their model-free counterparts — which do not require explicit model estimation — have not been adequately studied, especially in terms of sample efficiency. To address this inadequacy, we study a pessimistic variant of Q-learning in the context of finite-horizon Markov decision processes, and characterize its sample complexity under the single-policy concentrability assumption which does not require the full coverage of the state-action space. In addition, a variance-reduced pessimistic Q-learning algorithm is proposed to achieve near-optimal sample complexity. Altogether, this work highlights the efficiency of model-free algorithms in offline RL when used in conjunction with pessimism and variance reduction. 
    more » « less
  2. null (Ed.)
    Off-policy deep reinforcement learning (RL) has been successful in a range of challenging domains. However, standard off-policy RL algorithms can suffer from several issues, such as instability in Qlearning and balancing exploration and exploitation. To mitigate these issues, we present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy RL algorithms. SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration. By enforcing the diversity between agents using Bootstrap with random initialization, we show that these different ideas are largely orthogonal and can be fruitfully integrated, together further improving the performance of existing off-policy RL algorithms, such as Soft Actor-Critic and Rainbow DQN, for both continuous and discrete control tasks on both low-dimensional and high-dimensional environments. 
    more » « less
  3. The actor-critic RL is widely used in various robotic control tasks. By viewing the actor-critic RL from the perspective of variational inference (VI), the policy network is trained to obtain the approximate posterior of actions given the optimality criteria. However, in practice, the actor-critic RL may yield suboptimal policy estimates due to the amortization gap and insufficient exploration. In this work, inspired by the previous use of Hamiltonian Monte Carlo (HMC) in VI, we propose to integrate the policy network of actor-critic RL with HMC, which is termed as Hamiltonian Policy. As such we propose to evolve actions from the base policy according to HMC, and our proposed method has many benefits. First, HMC can improve the policy distribution to better approximate the posterior and hence reduce the amortization gap. Second, HMC can also guide the exploration more to the regions of action spaces with higher Q values, enhancing the exploration efficiency. Further, instead of directly applying HMC into RL, we propose a new leapfrog operator to simulate the Hamiltonian dynamics. Finally, in safe RL problems, we find that the proposed method can not only improve the achieved return, but also reduce safety constraint violations by discarding potentially unsafe actions. With comprehensive empirical experiments on continuous control baselines, including MuJoCo and PyBullet Roboschool, we show that the proposed approach is a data-efficient and easy-to-implement improvement over previous actor-critic methods. 
    more » « less
  4. Teamwork is a set of interrelated reasoning, actions and behaviors of team members that facilitate common objectives. Teamwork theory and experiments have resulted in a set of states and processes for team effectiveness in both human-human and agent-agent teams. However, human-agent teaming is less well studied because it is so new and involves asymmetry in policy and intent not present in human teams. To optimize team performance in human-agent teaming, it is critical that agents infer human intent and adapt their polices for smooth coordination. Most literature in human-agent teaming builds agents referencing a learned human model. Though these agents are guaranteed to perform well with the learned model, they lay heavy assumptions on human policy such as optimality and consistency, which is unlikely in many real-world scenarios. In this paper, we propose a novel adaptive agent architecture in human-model-free setting on a two-player cooperative game, namely Team Space Fortress (TSF). Previous human-human team research have shown complementary policies in TSF game and diversity in human players’ skill, which encourages us to relax the assumptions on human policy. Therefore, we discard learning human models from human data, and instead use an adaptation strategy on a pre-trained library of exemplar policies composed of RL algorithms or rule-based methods with minimal assumptions of human behavior. The adaptation strategy relies on a novel similarity metric to infer human policy and then selects the most complementary policy in our library to maximize the team performance. The adaptive agent architecture can be deployed in real-time and generalize to any off-the-shelf static agents. We conducted human-agent experiments to evaluate the proposed adaptive agent framework, and demonstrated the suboptimality, diversity, and adaptability of human policies in human-agent teams. 
    more » « less
  5. For many forms of e-learning environments, the system's behaviors can be viewed as a sequential decision process wherein, at each discrete step, the system is responsible for deciding the next system action when there are multiple ones available. Each of these system decisions a ects the user's successive actions and performance and some of them are more important than others. Thus, this raises an open ques- tion: how can we identify the critical system interactive de- cisions that are linked to student learning from a long trajec- tory of decisions? In this work, we proposed and evaluated Critical-Reinforcement Learning (Critical-RL), an adversar- ial deep reinforcement learning (ADRL) based framework to identify critical decisions and induce compact yet e ective policies. Speci cally, it induces a pair of adversarial policies based upon Deep Q-Network (DQN) with opposite goals: one is to improve student learning while the other is to hin- der; critical decisions are identi ed by comparing the two adversarial policies and using their corresponding Q-value di erences; nally, a Critical policy is induced by giving op- timal action on critical decisions but random yet reason- able decisions on others. We evaluated the e ectiveness of Critical policy against a random yet reasonable (Random) policy. While no signi cant di erence was found between the two condition, it is probably because of small sample sizes. Much to our surprise, we found that students often experience so-called Critical phase: a consecutive sequence of critical decisions with the same action. Students were further divided into High vs. Low based on the number of Critical phases they experienced and our results showed that while no signi cant was found between the two Low groups, the High Critical group learned signi cantly more than the High Random group. 
    more » « less