skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids
Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air–water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry.  more » « less
Award ID(s):
1905087
PAR ID:
10401491
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
42
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We report a metal-free novel route for the accelerated synthesis of benzimidazole and its derivatives in the ambient atmosphere. The synthetic procedure involves 1,2-aromatic diamines and alkyl or aryl carboxylic acids reacting in electrostatically charged microdroplets generated using a nano-electrospray (nESI) ion source. The reactions are accelerated by orders of magnitude in comparison to the bulk. No other acid, base or catalyst is used. Online analysis of the microdroplet accelerated reaction products is performed by mass spectrometry. We provide evidence for an acid catalyzed reaction mechanism based on identification of the intermediate arylamides. Their dehydration to give benzimidazoles occurs in a subsequent thermally enhanced step. It is suggested that the extraordinary acidity at the droplet surface allows the carboxylic acid to function as a C-centered electrophile. Comparisons of this methodology with data from thin film and bulk synthesis lead to the proposal of three key steps in the reaction: (i) formation of an unusual reagent (protonated carboxylic acid) because of the extraordinary conditions at the droplet interface, (ii) accelerated bimolecular reaction because of limited solvation at the interface and (iii) thermally assisted elimination of water. Eleven examples are shown as evidence of the scope of this chemistry. The accelerated synthesis has been scaled-up to establish the substituent-dependence and to isolate products for NMR characterization. 
    more » « less
  2. Cooperativity and non-additive interactions play central roles in the unusual and surprising behavior of water. A host of reactive oxygen species (ROS) including the hydroxyl radical •OH, superoxide radical anion (O2–•), hydroperoxide radical (HO2•), singlet oxygen (1O2), and also the more recently discussed water radical cation/anion pair (H2O+•/H2O–•) all add to the more familiar acid/base chemical pathways tread by hydronium (H3O+) and hydroxide (OH–). This is amplified in surface science because interfacial water – whether found at the gas/liquid, gas/solid, or liquid/solid interface – poses yet more unique behavior. This review explores the unexpected chemistry associated with ambient temperature aqueous interfaces much of which is mediated not only by ions and neutrals as expected, but also radical species. Water microdroplets catalyze numerous reactions and can also support simultaneous oxidation and reduction reactions through the production of reactive intermediates that owe their existence to the unique influence of the air/water or oil/water interface. Interfacial water influences and is influenced by the ubiquitous phenomenon of contact electrification, a manifestation of spontaneous symmetry breaking. The mechanisms of chemistry not only on and in microdroplets but also at the gas/solid and liquid/solid interfaces rely on a broad set of chemical transformations mediated by radicals. Furthermore, because aqueous macro- and micro-interfaces are ubiquitous on Earth, we find that water radical-mediated chemistry has applications to atmospheric chemistry, geochemistry, mineral weathering, pre-biotic chemistry, enhanced enzyme performance, wastewater remediation, public health, mechanochemistry, and potentially novel routes to pharmaceuticals. 
    more » « less
  3. Understanding how membrane forming amphiphiles are synthesized and aggregate in prebiotic settings is required for understanding the origins of life on Earth 4 billion years ago. Amino acids decyl esters were prepared by dehydration of decanol and amino acid as a model for a plausible prebiotic reaction at two temperatures. Fifteen amino acids were tested with a range of side chain chemistries to understand the role of amino acid identity on synthesis and membrane formation. Products were analyzed using LC-MS as well as microscopy. All amino acids tested produced decyl esters, and some of the products formed membranes when rehydrated in ultrapure water. One of the most abundant prebiotic amino acids, alanine, was remarkably easy to get to generate abundant, uniform membranes, indicating that this could be a selection mechanism for both amino acids and their amphiphilic derivatives. 
    more » « less
  4. This first-principles study investigates the interactions between amino acids and various types of montmorillonite clay surfaces, including a pristine surface, a surface with an oxygen vacancy, a surface with a silicon vacancy, and an Fe-doped surface. Our results show that all clay surfaces exhibit negative binding energies, indicating that the interaction between clay and amino acids is thermodynamically favorable. Among them, the surface with a Si vacancy displays the most negative binding energy, corresponding to the strongest interaction. We also examine the reactions between two alanine molecules to form a dipeptide molecule through the elimination of a water molecule in the absence of clay surfaces. The transition state search suggests that a proton transfer plays a critical role in the peptide bond formation based on structural and energetic features observed along the reaction path. Circular dichroism spectra computed for reactant, intermediate, and product states show distinct chiral signatures. Wave packet dynamics calculations indicate that quantum tunneling might be the mechanism underlying the reduced activation energy at low temperatures. These findings offer insight into the physicochemical processes at clay–amino acid interfaces and support the design of clay-based materials with applications in biotechnology and prebiotic chemistry. 
    more » « less
  5. Atmospheric freezing of water droplets suspended in air followed by cloud formation and precipitation represent fundamental steps of the terrestrial water cycle. These aqueous droplets exhibit distinct freezing mechanisms and thermodynamic requirements compared to bulk water often forming metastable supercooled water at subzero temperatures on the Celsius scale (<273 K) prior to crystallization. Here, we report on a real-time spectroscopic investigation combined with simultaneous visualizations of single aqueous droplet freezing events inside a cryogenically cooled ultrasonic levitation chamber with the ultimate goal of probing the molecular structure evolution and stages of ice formation. The observed droplet freezing follows a pseudoheterogeneous ice nucleation mechanism mimicking the process that occurs for atmospherically supercooled water droplets at the air–water interface. This proof-of-concept experimental setup allows future crystallization studies of homo- and heterogeneously doped aqueous droplets under simulated atmospheric environments—also in the presence of reactive trace gases, thus untangling dynamic molecular interactions and chemical reactions, which are of fundamental interest to low-temperature atmospheric chemistry delineating with ice nucleation mechanisms. 
    more » « less