skip to main content


Title: Life history and chemical defense interact to drive patterns of local adaptation in an annual monkeyflower
Although chemical defenses and herbivore pressure are widely established as key targets and agents of selection, their roles in local adaptation and determining potential evolutionary responses to changing climates are often neglected. Here, we explore fitness differences between 11 rangewide M. guttatus populations in a field common garden experiment and assess the agents and targets of selection driving relative fitness patterns. We use piecewise structural equation models to disentangle associations between chemical defenses, (phenylpropanoid glycosides; PPGs), and life history traits with herbivory and fitness. While the historical environment of populations is not predictive of fitness differences between populations, >90% of variation in fitness can be predicted by the flowering time and foliar PPG defense arsenal of a population. Piecewise structural equation models indicate that life history traits, particularly earlier flowering time, are strongly and directly linked to fitness. However, herbivory, particularly fruit predation, is also an important agent of selection that creates indirect links between fitness and both chemical defenses and life history traits. Our results emphasize the multivariate nature of the agents and targets of selections in producing adaptation and suggest that future responses to selection must navigate a complex fitness landscape.  more » « less
Award ID(s):
2045643
NSF-PAR ID:
10401545
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Evolution
Volume:
77
Issue:
2
ISSN:
1558-5646
Page Range / eLocation ID:
370-383
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although chemical defenses and herbivore pressure are widely established as key targets and agents of selection, their roles in local adaptation and determining potential evolutionary responses to changing climates are often neglected. Here, we explore fitness differences between 11 rangewide M. guttatus populations in a field common garden experiment and assess the agents and targets of selection driving relative fitness patterns. We use piecewise structural equation models to disentangle associations between chemical defenses, (phenylpropanoid glycosides; PPGs), and life history traits with herbivory and fitness. While the historical environment of populations is not predictive of fitness differences between populations, >90% of variation in fitness can be predicted by the flowering time and foliar PPG defense arsenal of a population. Piecewise structural equation models indicate that life history traits, particularly earlier flowering time, are strongly and directly linked to fitness. However, herbivory, particularly fruit predation, is also an important agent of selection that creates indirect links between fitness and both chemical defenses and life history traits. Our results emphasize the multivariate nature of the agents and targets of selections in producing adaptation and suggest that future responses to selection must navigate a complex fitness landscape.

     
    more » « less
  2. Abstract

    Local adaptation is common in plants, yet characterization of its underlying genetic basis is rare in herbaceous perennials. Moreover, while many plant species exhibit intraspecific chemical defence polymorphisms, their importance for local adaptation remains poorly understood. We examined the genetic architecture of local adaptation in a perennial, obligately‐outcrossing herbaceous legume, white clover (Trifolium repens). This widespread species displays a well‐studied chemical defence polymorphism for cyanogenesis (HCN release following tissue damage) and has evolved climate‐associated cyanogenesis clines throughout its range. Two biparental F2 mapping populations, derived from three parents collected in environments spanning the U.S. latitudinal species range (Duluth, MN, St. Louis, MO and Gainesville, FL), were grown in triplicate for two years in reciprocal common garden experiments in the parental environments (6,012 total plants). Vegetative growth and reproductive fitness traits displayed trade‐offs across reciprocal environments, indicating local adaptation. Genetic mapping of fitness traits revealed a genetic architecture characterized by allelic trade‐offs between environments, with 100% and 80% of fitness QTL in the two mapping populations showing significant QTL×E interactions, consistent with antagonistic pleiotropy. Across the genome there were three hotspots of QTL colocalization. Unexpectedly, we found little evidence that the cyanogenesis polymorphism contributes to local adaptation. Instead, divergent life history strategies in reciprocal environments were major fitness determinants: selection favoured early investment in flowering at the cost of multiyear survival in the southernmost site versus delayed flowering and multiyear persistence in the northern environments. Our findings demonstrate that multilocus genetic trade‐offs contribute to contrasting life history characteristics that allow for local adaptation in this outcrossing herbaceous perennial.

     
    more » « less
  3. Abstract Determining how adaptive combinations of traits arose requires understanding the prevalence and scope of genetic constraints. Frequently observed phenotypic correlations between plant growth, defenses, and/or reproductive timing have led researchers to suggest that pleiotropy or strong genetic linkage between variants affecting independent traits is pervasive. Alternatively, these correlations could arise via independent mutations in different genes for each trait and extensive correlational selection. Here we evaluate these alternatives by conducting a quantitative trait loci (QTL) mapping experiment involving a cross between 2 populations of common monkeyflower (Mimulus guttatus) that differ in growth rate as well as total concentration and arsenal composition of plant defense compounds, phenylpropanoid glycosides (PPGs). We find no evidence that pleiotropy underlies correlations between defense and growth rate. However, there is a strong genetic correlation between levels of total PPGs and flowering time that is largely attributable to a single shared QTL. While this result suggests a role for pleiotropy/close linkage, several other QTLs also contribute to variation in total PPGs. Additionally, divergent PPG arsenals are influenced by a number of smaller-effect QTLs that each underlie variation in 1 or 2 PPGs. This result indicates that chemical defense arsenals can be finely adapted to biotic environments despite sharing a common biochemical precursor. Together, our results show correlations between defense and life-history traits are influenced by pleiotropy or genetic linkage, but genetic constraints may have limited impact on future evolutionary responses, as a substantial proportion of variation in each trait is controlled by independent loci. 
    more » « less
  4. Organismal phenotypes often co-vary with environmental variables across broad geographic ranges. Less is known about the extent to which phenotypes match local conditions when multiple biotic and abiotic stressors vary at fine spatial scales. Bittercress (Brassicaceae: Cardamine cordifolia), a perennial forb, grows across a microgeographic mosaic of two contrasting herbivory regimes: high herbivory in meadows (sun habitats) and low herbivory in deeply shaded forest understories (shade habitats). We tested for local phenotypic differentiation in plant size, leaf morphology, and anti-herbivore defense (realized resistance and defensive chemicals, i.e., glucosinolates) across this habitat mosaic through reciprocal transplant–common garden experiments with clonally propagated rhizomes. We found habitat-specific divergence in morphological and defensive phenotypes that manifested as contrasting responses to growth in shade common gardens: weak petiole elongation and attenuated defenses in populations from shade habitats, and strong petiole elongation and elevated defenses in populations from sun habitats. These divergent phenotypes are generally consistent with reciprocal local adaptation: plants from shade habitats that naturally experience low herbivory show reduced investment in defense and an attenuated shade avoidance response, owing to its ineffectiveness within forest understories. By contrast, plants from sun habitats with high herbivory show shade-induced elongation, but no evidence of attenuated defenses canonically associated with elongation in shade-intolerant plant species. Finally, we observed differences in flowering phenology between habitat types that could potentially contribute to inter-habitat divergence by reducing gene flow. This study illuminates how clonally heritable plant phenotypes track a fine-grained mosaic of herbivore pressure and light availability in a native plant. 
    more » « less
  5. Abstract

    Most models exploring the effects of climate change on mosquito‐borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, “one size fits all” models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature inAedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations ofAe. aegypticollected from climatically diverse locations in Mexico, together with a long‐standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field‐derived population ofAe. aegyptifrom Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life‐history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence thatAe. aegyptipopulations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector‐borne disease transmission.

     
    more » « less