The Thirsty Eel: Summer and Winter Flow Thresholds that Tilt the Eel River of Northwestern California from Salmon-Supporting to Cyanobacterially Degraded States
- Award ID(s):
- 1331940
- PAR ID:
- 10401562
- Date Published:
- Journal Name:
- Copeia
- Volume:
- 103
- Issue:
- 1
- ISSN:
- 0045-8511
- Page Range / eLocation ID:
- 200 to 211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Since the initial discovery of Aqueoria victoria ’s green fluorescence off the coast of Washington’s Puget Sound, biofluorescent marine organisms have been found across the globe. The variety of colors of biofluorescence as well as the variability in the organisms that exhibit this fluorescence is astounding. The mechanisms of biofluorescence in marine organisms are also variable. To fluoresce, some organisms use fluorescent proteins, while others use small molecules. In eels, green biofluorescence was first identified in Anguilla japonica . The green fluorescence in A. japonica was discovered to be caused by a fatty acid binding protein (UnaG) whose fluorescence is induced by the addition of bilirubin. Members of this class of proteins were later discovered in Kaupichthys eels (Chlopsid FP I and Chlopsid FP II). Here, we report the discovery and characterization of the first member of this class of green fluorescent fatty acid binding proteins from the moray eel Gymnothorax zonipectis . This protein, GymFP, is 15.6 kDa with a fluorescence excitation at 496 nm and an emission maximum at 532 nm upon addition of bilirubin. GymFP is 61% homologous to UnaG and 47% homologous to Chlopsid FP I. Here, we report de novo transcriptome assembly, protein expression, and fluorescence spectroscopic characterization of GymFP. These findings extend the fluorescent fatty acid binding proteins into a third family of true eels (Anguilliformes).more » « less
-
Abstract Thermal microrefugia, sites within a landscape which are relatively protected from temperature extremes and warming trends, may be necessary for the conservation of animal species as climates warm. In freshwater environments, cold water fish species such as Pacific salmonids already rely on thermal microrefugia to persist in the southern extent of their range. Identifying sites that can provide such thermal microrefugia is essential to inform conservation and management decisions. At present, however, there is no consensus on appropriate ways to identify such sites, and multiple approaches are presented in the literature. Here, we use high resolution thermal data from two cold‐water zones created at the confluence of tributaries with a warm main channel of the South Fork Eel River in Northern California to demonstrate that the characteristics of cold zones identified as thermal microrefugia are not robust to the choice of microrefugium definition. Common definitions disagree on the existence, volume, seasonal temporal trends, and diurnal variations in microrefugia at the two confluences. The disagreements arise from the complex interaction between the confluence mixing regime with diurnal/seasonal warming patterns and how this shapes the distribution of water temperature at the confluences, and how it is classified by each definition. The disagreements cannot be resolved by simple bias correction approaches. Given that all existing definitions rely on simplifications that negate the nuanced way fish use cold water zones and respond to thermal stress, alternative observation and classification approaches may be needed to characterize cold zones in rivers as thermal microrefugia.more » « less
-
ABSTRACT ObjectiveEstuarine fishes experience significant diel and seasonal variations in their environments, with climate change introducing additional stressors, including altered salinity, temperatures, and water levels. American Eels Anguilla rostrata are present in Atlantic estuaries from Venezuela to Greenland. Despite their wide distribution and shrinking population, American Eels are understudied, in part because of the research challenges posed by their unusual catadromous life history. This study examines the spatial effects of changing estuarine water quality variables (water temperature, dissolved oxygen, and salinity) on the American Eel population in the Hudson River estuary (HRE). MethodsThe Hudson River Biological Monitoring Program, conducted from 1974 to 2017, consists of a suite of surveys recording fish abundance data and water quality variables. As the largest component of the Hudson River Biological Monitoring Program, the Long River Ichthyoplankton Survey contains 44 years of data on American Eels in the HRE. Using LRS catch data and Hudson River Biological Monitoring Program water quality measurements, we developed statistical models of American Eel population centers in the HRE. ResultsThe young-of-year and yearling-or-older population centers shifted downstream over the course of the Long River Ichthyoplankton Survey at average rates of approximately 1.1 and 0.41 km per year, respectively, despite higher temperatures and lower dissolved oxygen conditions closer to the estuary’s mouth. Mean water temperature and dissolved oxygen for the entire estuary have significant relationships with the population centers of both age-classes, although the eels were not apparently tracking stable conductivity or water temperature conditions; nor were the young of year tracking stable dissolved oxygen levels. ConclusionsThe downstream shift in HRE American Eel population centers over several decades and the relationship between this shift and changing environmental conditions indicate the need for improved understanding of the population dynamics of the globally distributed and declining species of the genus Anguilla. This knowledge is critical in the face of rapidly changing ecosystems.more » « less
An official website of the United States government

