skip to main content


Title: Soluble adenylyl cyclase coordinates intracellular pH homeostasis and biomineralization in calcifying cells of a marine animal
Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) coordinates intracellular pH (pH i ) regulation in the calcifying primary mesenchyme cells (PMCs) of sea urchin larvae. Single-cell transcriptomics, in situ hybridization, and immunocytochemistry elucidated the spatiotemporal expression of sAC during skeletogenesis. Live pH i imaging of PMCs revealed that the downregulation of sAC activity with two structurally unrelated small molecules inhibited pH i regulation of PMCs, an effect that was rescued by the addition of cell-permeable cAMP. Pharmacological sAC inhibition also significantly reduced normal spicule growth and spicule regeneration, establishing a link between PMC pH i regulation and biomineralization. Finally, increased expression of sAC mRNA was detected during skeleton remineralization and exposure to CO 2 -induced acidification. These findings suggest that transcriptional regulation of sAC is required to promote remineralization and to compensate for acidic stress. This work highlights the central role of sAC in coordinating acid-base regulation and biomineralization in calcifying cells of a marine animal.  more » « less
Award ID(s):
1754994
NSF-PAR ID:
10401598
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Journal of Physiology-Cell Physiology
Volume:
324
Issue:
3
ISSN:
0363-6143
Page Range / eLocation ID:
C777 to C786
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid‐phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid‐phase CaCO3flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean.

     
    more » « less
  2. Soluble adenylyl cyclase (sAC) is a HCO3 -stimulated enzyme that produces the ubiquitous signalling molecule cAMP, and deemed an evolutionarily conserved acid–base sensor. However, its presence is not yet confirmed in bony fishes, the most abundant and diverse of vertebrates. Here, we identified sAC genes in various cartilaginous, ray-finned and lobe-finned fish species. Next, we focused on rainbow trout sAC (rtsAC) and identified 20 potential alternative spliced mRNAs coding for protein isoforms ranging in size from 28 to 186 kDa. Biochemical and kinetic analyses on purified recombinant rtsAC protein determined stimulation by HCO3 at physiologically relevant levels for fish internal fluids (EC50∼ 7 mM). rtsAC activity was sensitive to KH7, LRE1, and DIDS (established inhibitors of sAC from other organisms), and insensitive to forskolin and 2,5-dideoxyadenosine (modulators of transmembrane adenylyl cyclases). Western blot and immunocytochemistry revealed high rtsAC expression in gill ion-transporting cells, hepatocytes, red blood cells, myocytes and cardiomyocytes. Analyses in the cell line RTgill-W1 suggested that some of the longer rtsAC isoforms may be preferentially localized in the nucleus, the Golgi apparatus and podosomes. These results indicate that sAC is poised to mediate multiple acid–base homeostatic responses in bony fishes, and provide cues about potential novel functions in mammals. 
    more » « less
  3. N/A (Ed.)

    Optimal function in the brain, especially in hippocampus—an area involved in learning and memory—requires tight regulation of intracellular pH (pHi) within neurons and neuroglial. The Na‐H exchangers (NHEs) are the major family of acid/base proteins involved in regulating pHi in the absence of CO2/HCO3. In the present study, we used the pH‐sensitive dye BCECF to examine the regulation of steady‐state pHi and the recovery of pHi from NH4+ ‐induced intracellular acid loads in HC neurons and astrocytes, co‐cultured from embryonic (E18‐20) Sprague Dawley rats, and studied in CO2/HCO3 −‐free HEPES buffered (“HEPES”) solutions. After at least 14‐days in a CO2/HCO3 – incubator, cells were removed, loaded with BCECF, and placed in a recording chamber with flowing HEPES. At the beginning of each experiment, we measured pHi (checkpoint A) after allowing pHi to stabilize for 5 minutes (checkpoint C), and reported mean “initial pHi”/SEM for neurons as 7.351/0.0597; N=37 (astrocytes: 7.189/0.0118, N=25) the value at checkpoint C = (pHi)C. After using the twin paired NH4+ ‐pulse protocol to acid load cells, we find that—after the pHi recovery from the first acid load—the average neuronal steady‐state pHi (now at checkpoint E; (pHi)E) is 6.953/0.0601(astrocytes: 7.037/0.0081). After the second NH4+ pulse the neuronal steady‐state pHi (now at checkpoint F; (pHi)F) in neurons is 6.937/0.010 (astrocytes: 7.020/0.0062). The recovery from acidosis is fit with a double exponential (DExp) which we replot as dpHi/dt vs pHi. With this traditional approach, dpHi/dt, the fit as it approaches the asymptotic pHi, becomes slightly non‐linear. To exploit the mainly linearity portion of the dpHi/dt vs. pHi plot (from the DExp fit) of the double exponential, we fit these dpHi/dt vs. pHi points with a DExp with a quasi‐ single exponential (SExp) to produce a quasi–single‐exponential rate constant (kqSExp) measured as dpH/dt. This analysis—when transformed to the pHi vs. time domain—generally produces a very good fit to the original pHi vs. time data. The mean kqSExp1 in neurons is 0.0054/ 0.0008 (astrocytes: 0.0107/0.0002) whereas the mean kqSExp2 in neurons is 0.0055/0.0008 (astrocytes: 0.0010/0.0003). We summarize the twin pHi recoveries from individual experiments in which we display as thumbnails the quasi–single‐exponential dpHi/dt line segments that represent the pHi recoveries from the first and second NH3/NH4+ pulses. These new analytical approaches may ultimately provide mechanistic insight into cell‐to‐cell heterogeneity of pHi regulation in the nervous system.

     
    more » « less
  4. Abstract

    Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching‐resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular‐level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching‐resistant and bleaching‐susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching‐susceptible corals had lower intracellular pH than bleaching‐resistant corals at the peak of bleaching for both symbiont‐hosting and symbiont‐free cells, indicating greater disruption of acid–base homeostasis in bleaching‐susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid–base regulation was significantly impaired at the cellular level even in bleaching‐resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid–base regulation may further exacerbate the physiological effects of climate change.

     
    more » « less
  5. The inner ear is essential for maintaining balance and hearing predator and prey in the environment. Each inner ear contains three CaCO3 otolith polycrystals, which are calcified within an alkaline, K+-rich endolymph secreted by the surrounding epithelium. However, the underlying cellular mechanisms are poorly understood, especially in marine fish. Here, we investigated the presence and cellular localization of several ion-transporting proteins within the saccular epithelium of the Pacific Chub Mackerel (Scomber japonicus). Western blotting revealed the presence of Na+/K+-ATPase (NKA), carbonic anhydrase (CA), Na+-K+-2Cl--co-transporter (NKCC), vacuolar-type H+-ATPase (VHA), plasma membrane Ca2+ ATPase (PMCA), and soluble adenylyl cyclase (sAC). Immunohistochemistry analysis identified two distinct ionocytes types in the saccular epithelium: Type-I ionocytes were mitochondrion-rich and abundantly expressed NKA and NKCC in their basolateral membrane, indicating a role in secreting K+ into the endolymph. On the other hand, Type-II ionocytes were enriched in cytoplasmic CA and VHA, suggesting they help transport HCO3- into the endolymph and remove H+. In addition, both types of ionocytes expressed cytoplasmic PMCA, which is likely involved in Ca2+ transport and homeostasis, as well as sAC, an evolutionary conserved acid-base sensing enzyme that regulates epithelial ion transport. Furthermore, CA, VHA, and sAC were also expressed within the capillaries that supply blood to the meshwork area, suggesting additional mechanisms that contribute to otolith calcification. This information improves our knowledge about the cellular mechanisms responsible for endolymph ion regulation and otolith formation, and can help understand responses to environmental stressors such as ocean acidification. 
    more » « less