skip to main content


Title: Development and Validation of the Uncertainty Management in Problem-Based Learning Scale in Postsecondary STEM Education
In problem-based learning (PBL), individual differences in students’ use of metacognition and self-regulation skills exist and calls for extensive research in postsecondary STEM education. This study focuses on students’ uncertainty management in PBL. A scale of the uncertainty management in PBL (UM-PBL) was developed. Exploratory factor analysis was conducted and showed that the UM-PBL has substantial reliability and a total of 14 items across three constructs of a) perception of uncertainty in learning to solve problems, b) self-efficacy in and c) strategy for uncertainty management. Gender differences in the first two constructs were found, confirming its known-group validation. Students’ problem-solving scores were positively correlated with scores of the first two constructs, suggesting its predictability of its relationship with academic performance.  more » « less
Award ID(s):
2114789
NSF-PAR ID:
10401617
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Annual Meeting of the American Educational Research Association 2023.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less
  2. Abstract Background Traditionally, doctoral student education in the biomedical sciences relies on didactic coursework to build a foundation of scientific knowledge and an apprenticeship model of training in the laboratory of an established investigator. Recent recommendations for revision of graduate training include the utilization of graduate student competencies to assess progress and the introduction of novel curricula focused on development of skills, rather than accumulation of facts. Evidence demonstrates that active learning approaches are effective. Several facets of active learning are components of problem-based learning (PBL), which is a teaching modality where student learning is self-directed toward solving problems in a relevant context. These concepts were combined and incorporated in creating a new introductory graduate course designed to develop scientific skills (student competencies) in matriculating doctoral students using a PBL format. Methods Evaluation of course effectiveness was measured using the principals of the Kirkpatrick Four Level Model of Evaluation. At the end of each course offering, students completed evaluation surveys on the course and instructors to assess their perceptions of training effectiveness. Pre- and post-tests assessing students’ proficiency in experimental design were used to measure student learning. Results The analysis of the outcomes of the course suggests the training is effective in improving experimental design. The course was well received by the students as measured by student evaluations (Kirkpatrick Model Level 1). Improved scores on post-tests indicate that the students learned from the experience (Kirkpatrick Model Level 2). A template is provided for the implementation of similar courses at other institutions. Conclusions This problem-based learning course appears effective in training newly matriculated graduate students in the required skills for designing experiments to test specific hypotheses, enhancing student preparation prior to initiation of their dissertation research. 
    more » « less
  3. Gendered differences in academic confidence and self-efficacy between men and women are well-documented. In STEM fields and specifically in engineering, such differences have important consequences in that students low on these constructs are often more prone to leave their degree programs. While this evidence base is fairly established, less is known about the extent to which men and women show differences in confidence of team success, or collective efficacy, which may also be consequential in decisions to join and persist in design team experiences, or even to stay in or leave an engineering major, especially for first-year students. In this analysis, we quantitatively investigated gendered differences in confidence of team success and collective efficacy among first-year engineering students working on semester-long design projects in stable teams. Using a software tool built to support equitable teamwork, survey data on team confidence and collective efficacy was collected for these engineering students as well as for students in other courses for the sake of comparison. Three hierarchical linear models were fit to the data from 1,806 students across 31 unique course/term combinations. The results were mixed. In two of these analyses, we identified significant interactions between gender and team confidence. Specifically, men generally reported higher team confidence scores than women throughout the term with women eventually catching up, and team confidence ratings increased for men but not women following a lesson on imposter syndrome. No gendered differences were observed with respect to a collective efficacy scale administered near the middle and end of the term, however. In all cases, the results were consistent across course type (engineering, business, and others). 
    more » « less
  4. Abstract  
    more » « less
  5. When students repeatedly reflect, it can enhance their metacognitive abilities, including self-regulatory skills of planning, monitoring, and evaluating. In a fluid mechanics course for undergraduates at a large southeastern U.S. university, in-class problem solving in a flipped classroom was coupled with intentional metacognitive skills instruction and repeated reflection to enhance metacognition. The weekly reflective responses were coded by two analysts to identify the recurring themes and uncover evidence of the development and/or reinforcement of self-regulating behaviors for academic management. To enable a comparison, a flipped classroom without the metacognitive instruction and repeated reflection was also implemented (i.e., non-intervention group). The two cohorts completed identical final exams. Based on our preliminary analysis with year one data, a statistically and practically-significant difference between the two cohorts was found with the free-response scores on the final exam in favor of the intervention cohort that had received the metacognitive support ( p < 0.0005; Cohen's d = 0.72). Also, the Metacognitive Activities Inventory (MCAI) indicated a significantly-higher positive change in self-regulatory behavior for the intervention cohort ( p = 0.001; d = 0.50). Focus groups were conducted to gather students’ perspectives on the reflective activity, with differences found by demographic group. In addition, a significantly higher proportion of females (versus males) viewed the reflections in a positive manner ( p = 0.05). Significant associations between themes in the weekly reflections and direct knowledge measures were also uncovered. This included a positive relationship between academic self-management (i.e., diligence and carefulness) and exam performance. Overall, our preliminary results point to a desirable impact of metacognitive instruction and repeated reflection on knowledge outcomes, metacognitive skills, and self-regulatory behaviors.

     
    more » « less