skip to main content


Title: Root exudate concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) affect maize rhizobacterial communities at specific developmental stages
Abstract

Root exudates shape the rhizosphere microbiome, but little is known about the specific compounds in root exudates that are important. Here, we investigated the impacts of the plant-synthesized phytohormones indole-3-acetic acid (IAA) and abscisic acid (ABA) exuded by roots on the maize rhizobacterial communities. To identify maize genotypes that differed in the root exudate concentrations of IAA and ABA, we screened hundreds of inbred lines using a semi-hydroponic system. Twelve genotypes with variable exudate concentrations of IAA and ABA were selected for a replicated field experiment. Bulk soil, rhizosphere, and root endosphere samples were collected at two vegetative and one reproductive maize developmental stage. IAA and ABA concentrations in rhizosphere samples were quantified by liquid chromatography–mass spectrometry. The bacterial communities were analyzed by V4 16S rRNA amplicon sequencing. Results indicated that IAA and ABA concentrations in root exudates significantly affected the rhizobacterial communities at specific developmental stages. ABA impacted the rhizosphere bacterial communities at later developmental stages, whereas IAA affected the rhizobacterial communities at the vegetative stages. This study contributed to our knowledge about the influence that specific root exudate compounds have on the rhizobiome composition, showing that the phytohormones IAA and ABA exuded by roots have a role in the plant–microbiome interactions.

 
more » « less
NSF-PAR ID:
10401659
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
FEMS Microbiology Ecology
Volume:
99
Issue:
3
ISSN:
1574-6941
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Root exudates are important for shaping root-associated microbiomes. However, studies on a wider range of metabolites in exudates are required for a comprehensive understanding about their influence on microbial communities. We identified maize inbred lines that differ in exudate concentrations of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and γ-aminobutyric acid (GABA) using a semi-hydroponic system. These lines were grown in the field to determine the changes in microbial diversity and gene expression due to varying concentrations of DIMBOA and GABA in exudates using 16S rRNA amplicon sequencing and metatranscriptomics. Results showed individual and interaction effects of DIMBOA and GABA on the rhizosphere and root endosphere β-diversity, most strongly at the V10 growth stage. The main bacterial families affected by both compounds were Ktedonobacteraceae and Xanthomonadaceae. Higher concentrations of DIMBOA in exudates affected the rhizosphere metatranscriptome, enriching for metabolic pathways associated with plant disease. This study validated the use of natural variation within plant species as a powerful approach for understanding the role of root exudates on microbiome selection. We also showed that a semi-hydroponic system can be used to identify maize genotypes that differ in GABA and DIMBOA exudate concentrations under field conditions. The impact of GABA exudation on root-associated microbiomes is shown for the first time.

     
    more » « less
  2. Abstract Background

    Although there have been numerous studies describing plant growth systems for root exudate collection, a common limitation is that these systems require disruption of the plant root system to facilitate exudate collection. Here, we present a newly designed semi-hydroponic system that uses glass beads as solid support to simulate soil impedance, which combined with drip irrigation, facilitates growth of healthy maize plants, collection and analysis of root exudates, and phenotyping of the roots with minimal growth disturbance or root damage.

    Results

    This system was used to collect root exudates from seven maize genotypes using water or 1 mM CaCl2, and to measure root phenotype data using standard methods and the Digital imaging of root traits (DIRT) software. LC–MS/MS (Liquid Chromatography—Tandem Mass Spectrometry) and GC–MS (Gas Chromatography—Mass Spectrometry) targeted metabolomics platforms were used to detect and quantify metabolites in the root exudates. Phytohormones, some of which are reported in maize root exudates for the first time, the benzoxazinoid DIMBOA (2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one), amino acids, and sugars were detected and quantified. After validating the methodology using known concentrations of standards for the targeted compounds, we found that the choice of the exudate collection solution affected the exudation and analysis of a subset of analyzed metabolites. No differences between collection in water or CaCl2were found for phytohormones and sugars. In contrast, the amino acids were more concentrated when water was used as the exudate collection solution. The collection in CaCl2required a clean-up step before MS analysis which was found to interfere with the detection of a subset of the amino acids. Finally, using the phenotypic measurements and the metabolite data, significant differences between genotypes were found and correlations between metabolites and phenotypic traits were identified.

    Conclusions

    A new plant growth system combining glass beads supported hydroponics with semi-automated drip irrigation of sterile solutions was implemented to grow maize plants and collect root exudates without disturbing or damaging the roots. The validated targeted exudate metabolomics platform combined with root phenotyping provides a powerful tool to link plant root and exudate phenotypes to genotype and study the natural variation of plant populations.

     
    more » « less
  3. null (Ed.)
    Abstract Background Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. Results Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. Conclusions These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions. 
    more » « less
  4. The root microbiome structure ensures optimal plant host health and fitness, and it is, at least in part, defined by the plant genotype. It is well documented that root-secreted amino acids promote microbial chemotaxis and growth in the rhizosphere. However, whether the plant-mediated re-uptake of amino acids contributes to maintaining optimal levels of amino acids in the root exudates, and, in turn, microbial growth and metabolism, remains to be established. Here, we show that Lysine-Histidine Transporter-1 (LHT1), an amino acid inward transporter expressed in Arabidopsis thaliana roots, limits the growth of the plant-growth-promoting bacteria Pseudomonas simiae WCS417r (Ps WCS417r). The amino acid profiling of the lht1 mutant root exudates showed increased levels of glutamine, among other amino acids. Interestingly, lht1 exudates or Gln-supplemented wild-type exudates enhance Ps WCS417r growth. However, despite promoting bacterial growth and robust root colonization, lht1 exudates and Gln-supplemented wild-type exudates inhibited plant growth in a Ps WCS417r-dependent manner. The transcriptional analysis of defense and growth marker genes revealed that plant growth inhibition was not linked to the elicitation of plant defense but likely to the impact of Ps WCS417r amino acids metabolism on auxin signaling. These data suggest that an excess of amino acids in the rhizosphere impacts Ps WCS417r metabolism, which, in turn, inhibits plant growth. Together, these results show that LHT1 regulates the amino-acid-mediated interaction between plants and Ps WCS417r and suggest a complex relationship between root-exuded amino acids, root colonization by beneficial bacteria, bacterial metabolism, and plant growth promotion. 
    more » « less
  5. ABSTRACT Plant roots shape the rhizosphere community by secreting compounds that recruit diverse bacteria. Colonization of various plant roots by the motile alphaproteobacterium Azospirillum brasilens e causes increased plant growth, root volume, and crop yield. Bacterial chemotaxis in this and other motile soil bacteria is critical for competitive colonization of the root surfaces. The role of chemotaxis in root surface colonization has previously been established by endpoint analyses of bacterial colonization levels detected a few hours to days after inoculation. More recently, microfluidic devices have been used to study plant-microbe interactions, but these devices are size limited. Here, we use a novel slide-in chamber that allows real-time monitoring of plant-microbe interactions using agriculturally relevant seedlings to characterize how bacterial chemotaxis mediates plant root surface colonization during the association of A. brasilens e with Triticum aestivum (wheat) and Medicago sativa (alfalfa) seedlings. We track A. brasilense accumulation in the rhizosphere and on the root surfaces of wheat and alfalfa. A. brasilense motile cells display distinct chemotaxis behaviors in different regions of the roots, including attractant and repellent responses that ultimately drive surface colonization patterns. We also combine these observations with real-time analyses of behaviors of wild-type and mutant strains to link chemotaxis responses to distinct chemicals identified in root exudates to specific chemoreceptors that together explain the chemotactic response of motile cells in different regions of the roots. Furthermore, the bacterial second messenger c-di-GMP modulates these chemotaxis responses. Together, these findings illustrate dynamic bacterial chemotaxis responses to rhizosphere gradients that guide root surface colonization. IMPORTANCE Plant root exudates play critical roles in shaping rhizosphere microbial communities, and the ability of motile bacteria to respond to these gradients mediates competitive colonization of root surfaces. Root exudates are complex chemical mixtures that are spatially and temporally dynamic. Identifying the exact chemical(s) that mediates the recruitment of soil bacteria to specific regions of the roots is thus challenging. Here, we connect patterns of bacterial chemotaxis responses and sensing by chemoreceptors to chemicals found in root exudate gradients and identify key chemical signals that shape root surface colonization in different plants and regions of the roots. 
    more » « less