Abstract We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2, warming, and decreased precipitation combined because higher water‐use efficiency with elevated CO2and higher fertility with warming compensate for responses to drought. Response to elevated CO2, warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C‐nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2and climate change.
more »
« less
Temperature and interspecific interactions drive differences in carbon use efficiencies and biomass stoichiometry among aquatic fungi
Abstract Saprotrophic fungi play important roles in transformations of carbon (C), nitrogen (N), and phosphorus (P) in aquatic environments. However, it is unclear how warming will alter fungal cycling of C, N, and P. We conducted an experiment with four aquatic hyphomycetes (Articulospora tetracladia, Hydrocina chaetocladia, Flagellospora sp., and Aquanectria penicillioides), and an assemblage of the same taxa, to test how temperature alters C and nutrient use. Specifically, we evaluated biomass accrual, C:N, C:P, δ13C, and C use efficiency (CUE) over a 35-d experiment with temperatures ranging from 4ºC to 20ºC. Changes in biomass accrual and CUE were predominantly quadratic with peaks between 7ºC and 15ºC. The C:P of H. chaetocladia biomass increased 9× over the temperature gradient, though the C:P of other taxa was unaffected by temperature. Changes in C:N were relatively small across temperatures. Biomass δ13C of some taxa changed across temperatures, indicating differences in C isotope fractionation. Additionally, the 4-species assemblage differed from null expectations based on the monocultures in terms of biomass accrual, C:P, δ13C, and CUE, suggesting that interactions among taxa altered C and nutrient use. These results highlight that temperature and interspecific interactions among fungi can alter traits affecting C and nutrient cycling.
more »
« less
- PAR ID:
- 10401662
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- FEMS Microbiology Ecology
- Volume:
- 99
- Issue:
- 3
- ISSN:
- 1574-6941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Coastal ecosystems are exposed to saltwater intrusion but differential effects on biogeochemical cycling are uncertain. We tested how elevated salinity and phosphorus (P) individually and interactively affect microbial activities and biogeochemical cycling in freshwater and brackish wetland soils. In experimental mesocosms, we added crossed gradients of elevated concentrations of soluble reactive P (SRP) (0, 20, 40, 60, 80 μg/L) and salinity (0, 4, 7, 12, 16 ppt) to freshwater and brackish peat soils (10, 14, 17, 22, 26 ppt) for 35 d. We quantified changes in water chemistry [dissolved organic carbon (DOC), ammonium (), nitrate + nitrite (N + N), SRP concentrations], soil microbial extracellular enzyme activities, respiration rates, microbial biomass C, and soil chemistry (%C, %N, %P, C:N, C:P, N:P). DOC, , and SRP increased in freshwater but decreased in brackish mesocosms with elevated salinity. DOC similarly decreased in brackish mesocosms with added P, and N + N decreased with elevated salinity in both freshwater and brackish mesocosms. In freshwater soils, water column P uptake occurred only in the absence of elevated salinity and when P was above 40 µg/L. Freshwater microbial EEAs, respiration rates, and microbial biomass C were consistently higher compared to those from brackish soils, and soil phosphatase activities and microbial respiration rates in freshwater soils decreased with elevated salinity. Elevated salinity increased arylsulfatase activities and microbial biomass C in brackish soils, and elevated P increased microbial respiration rates in brackish soils. Freshwater soil %C, %N, %P decreased and C:P and N:P increased with elevated salinity. Elevated P increased %C and C:N in freshwater soils and increased %P but decreased C:P and N:P in brackish soils. Freshwater soils released more C and nutrients than brackish soils when exposed to elevated salinity, and both soils were less responsive to elevated P than expected. Freshwater soils became more nutrient‐depleted with elevated salinity, whereas brackish soils were unaffected by salinity but increased P uptake. Microbial activities in freshwater soils were inhibited by elevated salinity and unaffected by added P, but brackish soil microbial activities slightly increased with elevated salinity and P.more » « less
-
Abstract Increases in nitrogen (N) and phosphorus (P) availability are changing animal communities, partly by altering stoichiometric imbalances between consumers and their food. Testing relationships between resource stoichiometry and consumer assemblage structure requires ecosystem‐level manipulations that have been lacking to date.We analysed patterns of macroinvertebrate community composition in five detritus‐based headwater streams subject to experimental whole‐stream N and P additions that spanned a steep gradient in dissolved N:P ratio (2:1, 8:1, 16:1, 32:1, 128:1) over 2 years, following a 1‐year pre‐treatment period.We predicted that shifts in leaf litter stoichiometry would drive overall patterns of community composition via greater responses of shredders to enrichment than other taxa, as shredders dominate primary consumer biomass and experience larger consumer–resource elemental imbalances than other functional groups in stream ecosystems. Specifically, we expected litter C:P to be a significant predictor of shredder biomass given the greater relative imbalances between shredder and litter C:P than C:N. Finally, we tested whether shredder responses to enrichment were related to other taxon‐level traits, including body size and stoichiometry, larval life span and growth rate.Whole‐community composition shifted similarly across the five streams after enrichment, largely driven by increased shredder and predator biomass. These shifts were limited to the autumn/winter seasons and related to decreased leaf litter C:P, highlighting important links between the quality of seasonal litter subsidies and community phenology.Among 10 taxa that drove structural shifts, two declined while other taxa from the same functional/taxonomic groups responded positively, suggesting that specific life‐history traits may determine sensitivity to enrichment.Increases in total shredder biomass, and in biomass of several common shredders, were associated with lower litter C:P. Body C:P did not predict shredder response to enrichment. However, weak negative relationships between shredder response and body size, and larval life span, suggest that small‐bodied and short‐lived taxa may be more responsive to shifting resource stoichiometry.Moderate anthropogenic increases in N and P availability affect resource stoichiometry and can alter animal communities, influencing additional food web and ecosystem properties. We provide support for ecological stoichiometry as a framework for predicting such outcomes based on changes in the elemental composition of resource pools. Aplain language summaryis available for this article.more » « less
-
Abstract With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green algaChlamydomonas reinhardtiiadjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed thatChlamydomonasexhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential ofChlamydomonasin a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure.more » « less
-
Abstract Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems wereEMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.more » « less