skip to main content


Title: Community‐based postural control assessment in autistic individuals indicates a similar but delayed trajectory compared to neurotypical individuals
Abstract

Autistic individuals exhibit significant sensorimotor differences. Postural stability and control are foundational motor skills for successfully performing many activities of daily living. In neurotypical development, postural stability and control develop throughout childhood and adolescence. In autistic development, previous studies have focused primarily on individual age groups (e.g., childhood, adolescence, adulthood) or only controlled for age using age‐matching. Here, we examined the age trajectories of postural stability and control in autism from childhood through adolescents using standardized clinical assessments. In study 1, we tested the postural stability of autistic (n = 27) and neurotypical (n = 41) children, adolescents, and young adults aged 7–20 years during quiet standing on a force plate in three visual conditions: eyes open (EO), eyes closed (EC), and eyes open with the head in a translucent dome (Dome). Postural sway variability decreased as age increased for both groups, but autistic participants showed greater variability than neurotypical participants across age. In study 2, we tested autistic (n = 21) and neurotypical (n = 32) children and adolescents aged 7–16 years during a dynamic postural control task with nine targets. Postural control efficiency increased as age increased for both groups, but autistic participants were less efficient compared to neurotypical participants across age. Together, these results indicate that autistic individuals have a similar age trajectory for postural stability and control compared to neurotypical individuals, but have lower postural stability and control overall.

 
more » « less
NSF-PAR ID:
10401705
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Autism Research
Volume:
16
Issue:
3
ISSN:
1939-3792
Page Range / eLocation ID:
p. 543-557
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Employment outcomes for autistic 1 individuals are often poorer relative to their neurotypical (NT) peers, resulting in a greater need for other forms of financial and social support. While a great deal of work has focused on developing interventions for autistic children, relatively less attention has been paid to directly addressing the employment challenges faced by autistic adults. One key impediment to autistic individuals securing employment is the job interview. Autistic individuals often experience anxiety in interview situations, particularly with open-ended questions and unexpected interruptions. They also exhibit atypical gaze patterns that may be perceived as, but not necessarily indicative of, disinterest or inattention. In response, we developed a closed-loop adaptive virtual reality (VR)–based job interview training platform, which we have named Career Interview Readiness in VR (CIRVR). CIRVR is designed to provide an engaging, adaptive, and individualized experience to practice and refine interviewing skills in a less anxiety-inducing virtual context. CIRVR contains a real-time physiology-based stress detection module, as well as a real-time gaze detection module, to permit individualized adaptation. We also present the first prototype of the CIRVR Dashboard, which provides visualizations of data to help autistic individuals as well as potential employers and job coaches make sense of the data gathered from interview sessions. We conducted a feasibility study with 9 autistic and 8 NT individuals to assess the preliminary usability and feasibility of CIRVR. Results showed differences in perceived usability of the system between autistic and NT participants, and higher levels of stress in autistic individuals during interviews. Participants across both groups reported satisfaction with CIRVR and the structure of the interview. These findings and feedback will support future work in improving CIRVR’s features in hopes for it to be a valuable tool to support autistic job candidates as well as their potential employers. 
    more » « less
  2. Abstract

    The fields of science, technology, engineering, and mathematics (STEM) are rife with inequalities and under‐representation that have their roots in childhood. While researchers have focused on gender and race/ethnicity as two key dimensions of inequality, less attention has been paid to wealth. To this end, and drawing from the Social Reasoning Development approach, we examined children's and adolescents’ perceptions of STEM ability and access to opportunities as a function of wealth, as well as their desire to rectify such inequalities. Participants (n = 234: early childhood,n = 70, mean age = 6.33, SD = .79; middle childhood,n = 92, mean age = 8.90, SD = .83 and early adolescence,n = 62, mean age = 12.00; SD = 1.16) in the U.K. (64% White British) and U.S. (40% White/European American) read about two characters, one high‐wealth and one low‐wealth. In early childhood, participants reported that the high‐wealth character would have greater STEM ability and were just as likely to invite either character to take part in a STEM opportunity. By middle childhood, participants were more likely to report equal STEM abilities for both characters and to seek to rectify inequalities by inviting the low‐wealth character to take part in a STEM opportunity. However, older participants reported that peers would still prefer to invite the high‐wealth character. These findings also varied by ethnic group status, with minority status participants rectifying inequalities at a younger age than majority status participants. Together these findings document that children are aware of STEM inequalities based on wealth and, with age, will increasingly seek to rectify these inequalities.

     
    more » « less
  3. Previous findings show that the morphology of folds (sulci) of the human cerebral cortex flatten during postnatal development. However, previous studies did not consider the relationship between sulcal morphology and cognitive development in individual participants. Here, we fill this gap in knowledge by leveraging cross-sectional morphologic neuroimaging data in the lateral PFC (LPFC) from individual human participants (6-36 years old, males and females;N= 108; 3672 sulci), as well as longitudinal morphologic and behavioral data from a subset of child and adolescent participants scanned at two time points (6-18 years old;N= 44; 2992 sulci). Manually defining thousands of sulci revealed that LPFC sulcal morphology (depth, surface area, and gray matter thickness) differed between children (6-11 years old)/adolescents (11-18 years old) and young adults (22-36 years old) cross-sectionally, but only cortical thickness showed differences across childhood and adolescence and presented longitudinal changes during childhood and adolescence. Furthermore, a data-driven approach relating morphology and cognition identified that longitudinal changes in cortical thickness of four left-hemisphere LPFC sulci predicted longitudinal changes in reasoning performance, a higher-level cognitive ability that relies on LPFC. Contrary to previous findings, these results suggest that sulci may flatten either after this time frame or over a longer longitudinal period of time than previously presented. Crucially, these results also suggest that longitudinal changes in the cortex within specific LPFC sulci are behaviorally meaningful, providing targeted structures, and areas of the cortex, for future neuroimaging studies examining the development of cognitive abilities.

    SIGNIFICANCE STATEMENTRecent work has shown that individual differences in neuroanatomical structures (indentations, or sulci) within the lateral PFC are behaviorally meaningful during childhood and adolescence. Here, we describe how specific lateral PFC sulci develop at the level of individual participants for the first time: from both cross-sectional and longitudinal perspectives. Further, we show, also for the first time, that the longitudinal morphologic changes in these structures are behaviorally relevant. These findings lay the foundation for a future avenue to precisely study the development of the cortex and highlight the importance of studying the development of sulci in other cortical expanses and charting how these changes relate to the cognitive abilities those areas support at the level of individual participants.

     
    more » « less
  4. Abstract Objective

    Collisions between bicycles and motor vehicles are one of the leading risk factors for injury and death in childhood and adolescence. We examined longitudinal and concurrent effortful control (EC) as predictors of risky bicycling behavior in early- to mid-adolescence, with age and gender as moderators. We also examined whether EC was associated with parent-reported real-world bicycling behavior and all lifetime unintentional injuries.

    Methods

    Parent-reported EC measures were collected when children (N = 85) were 4 years old and when they were either 10 years (N = 42) or 15 years (N = 43) old. We assessed risky bicycling behavior by asking the adolescents to bicycle across roads with high-density traffic in an immersive virtual environment. Parents also reported on children’s real-world bicycling behavior and lifetime unintentional injuries at the time of the bicycling session.

    Results

    We found that both longitudinal and concurrent EC predicted adolescents’ gap choices, though these effects were moderated by age and gender. Lower parent-reported early EC in younger and older girls predicted a greater willingness to take tight gaps (3.5 s). Lower parent-reported concurrent EC in older boys predicted a greater willingness to take gaps of any size. Children lower in early EC started bicycling earlier and were rated as less cautious bicyclists as adolescents. Adolescents lower in concurrent EC were also rated as less cautious bicyclists and had experienced more lifetime unintentional injuries requiring medical attention.

    Conclusion

    Early measures of child temperament may help to identify at-risk populations who may benefit from parent-based interventions.

     
    more » « less
  5. The PoseASL dataset consists of color and depth videos collected from ASL signers at the Linguistic and Assistive Technologies Laboratory under the direction of Matt Huenerfauth, as part of a collaborative research project with researchers at the Rochester Institute of Technology, Boston University, and the University of Pennsylvania. Access: After becoming an authorized user of Databrary, please contact Matt Huenerfauth if you have difficulty accessing this volume. We have collected a new dataset consisting of color and depth videos of fluent American Sign Language signers performing sequences ASL signs and sentences. Given interest among sign-recognition and other computer-vision researchers in red-green-blue-depth (RBGD) video, we release this dataset for use by the research community. In addition to the video files, we share depth data files from a Kinect v2 sensor, as well as additional motion-tracking files produced through post-processing of this data. Organization of the Dataset: The dataset is organized into sub-folders, with codenames such as "P01" or "P16" etc. These codenames refer to specific human signers who were recorded in this dataset. Please note that there was no participant P11 nor P14; those numbers were accidentally skipped during the process of making appointments to collect video stimuli. Task: During the recording session, the participant was met by a member of our research team who was a native ASL signer. No other individuals were present during the data collection session. After signing the informed consent and video release document, participants responded to a demographic questionnaire. Next, the data-collection session consisted of English word stimuli and cartoon videos. The recording session began with showing participants stimuli consisting of slides that displayed English word and photos of items, and participants were asked to produce the sign for each (PDF included in materials subfolder). Next, participants viewed three videos of short animated cartoons, which they were asked to recount in ASL: - Canary Row, Warner Brothers Merrie Melodies 1950 (the 7-minute video divided into seven parts) - Mr. Koumal Flies Like a Bird, Studio Animovaneho Filmu 1969 - Mr. Koumal Battles his Conscience, Studio Animovaneho Filmu 1971 The word list and cartoons were selected as they are identical to the stimuli used in the collection of the Nicaraguan Sign Language video corpora - see: Senghas, A. (1995). Children’s Contribution to the Birth of Nicaraguan Sign Language. Doctoral dissertation, Department of Brain and Cognitive Sciences, MIT. Demographics: All 14 of our participants were fluent ASL signers. As screening, we asked our participants: Did you use ASL at home growing up, or did you attend a school as a very young child where you used ASL? All the participants responded affirmatively to this question. A total of 14 DHH participants were recruited on the Rochester Institute of Technology campus. Participants included 7 men and 7 women, aged 21 to 35 (median = 23.5). All of our participants reported that they began using ASL when they were 5 years old or younger, with 8 reporting ASL use since birth, and 3 others reporting ASL use since age 18 months. Filetypes: *.avi, *_dep.bin: The PoseASL dataset has been captured by using a Kinect 2.0 RGBD camera. The output of this camera system includes multiple channels which include RGB, depth, skeleton joints (25 joints for every video frame), and HD face (1,347 points). The video resolution produced in 1920 x 1080 pixels for the RGB channel and 512 x 424 pixels for the depth channels respectively. Due to limitations in the acceptable filetypes for sharing on Databrary, it was not permitted to share binary *_dep.bin files directly produced by the Kinect v2 camera system on the Databrary platform. If your research requires the original binary *_dep.bin files, then please contact Matt Huenerfauth. *_face.txt, *_HDface.txt, *_skl.txt: To make it easier for future researchers to make use of this dataset, we have also performed some post-processing of the Kinect data. To extract the skeleton coordinates of the RGB videos, we used the Openpose system, which is capable of detecting body, hand, facial, and foot keypoints of multiple people on single images in real time. The output of Openpose includes estimation of 70 keypoints for the face including eyes, eyebrows, nose, mouth and face contour. The software also estimates 21 keypoints for each of the hands (Simon et al, 2017), including 3 keypoints for each finger, as shown in Figure 2. Additionally, there are 25 keypoints estimated for the body pose (and feet) (Cao et al, 2017; Wei et al, 2016). Reporting Bugs or Errors: Please contact Matt Huenerfauth to report any bugs or errors that you identify in the corpus. We appreciate your help in improving the quality of the corpus over time by identifying any errors. Acknowledgement: This material is based upon work supported by the National Science Foundation under award 1749376: "Collaborative Research: Multimethod Investigation of Articulatory and Perceptual Constraints on Natural Language Evolution." 
    more » « less