skip to main content

Title: Hidden deep in the halo: selection of a reduced proper motion halo catalogue and mining retrograde streams in the velocity space

The Milky Way halo is one of the few galactic haloes that provides a unique insight into galaxy formation by resolved stellar populations. Here, we present a catalogue of ∼47 million halo stars selected independent of parallax and line-of-sight velocities, using a combination of Gaia DR3 proper motion and photometry by means of their reduced proper motion. We select high tangential velocity (halo) main sequence stars and fit distances to them using their simple colour-absolute-magnitude relation. This sample reaches out to ∼21 kpc with a median distance of 6.6 kpc thereby probing much further out than would be possible using reliable Gaia parallaxes. The typical uncertainty in their distances is $0.57_{-0.26}^{+0.56}$ kpc. Using the colour range 0.45 < (G0 − GRP, 0) < 0.715, where the main sequence is narrower, gives an even better accuracy down to $0.39_{-0.12}^{+0.18}$ kpc in distance. The median velocity uncertainty for stars within this colour range is 15.5 km s−1. The distribution of these sources in the sky, together with their tangential component velocities, are very well-suited to study retrograde substructures. We explore the selection of two complex retrograde streams: GD-1 and Jhelum. For these streams, we resolve the gaps, wiggles and density breaks reported in the literature more clearly. We also illustrate the effect of the kinematic selection bias towards high proper motion stars and incompleteness at larger distances due to Gaia’s scanning law. These examples showcase how the full RPM catalogue made available here can help us paint a more detailed picture of the build-up of the Milky Way halo.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 2087-2102
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We perform a detailed photometric and astrometric analysis of stars in the Jet stream using data from the first data release of the DECam Local Volume Exploration Survey DR1 and Gaia EDR3. We discover that the stream extends over ∼ 29° on the sky (increasing the known length by 18°), which is comparable to the kinematically cold Phoenix, ATLAS, and GD-1 streams. Using blue horizontal branch stars, we resolve a distance gradient along the Jet stream of 0.2 kpc deg−1, with distances ranging fromD∼ 27–34 kpc. We use natural splines to simultaneously fit the stream track, width, and intensity to quantitatively characterize density variations in the Jet stream, including a large gap, and identify substructure off the main track of the stream. Furthermore, we report the first measurement of the proper motion of the Jet stream and find that it is well aligned with the stream track, suggesting the stream has likely not been significantly perturbed perpendicular to the line of sight. Finally, we fit the stream with a dynamical model and find that it is on a retrograde orbit, and is well fit by a gravitational potential including the Milky Way and Large Magellanic Cloud. These results indicate the Jet stream is an excellent candidate for future studies with deeper photometry, astrometry, and spectroscopy to study the potential of the Milky Way and probe perturbations from baryonic and dark matter substructure.

    more » « less

    We report the spectroscopic analysis of 20 halo ab-type RR Lyrae stars with heliocentric distances between 15 and 165 kpc, conducted using medium-resolution spectra from the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We obtain the systemic line-of-sight velocities of our targets with typical uncertainties of 5–10 km s−1 and compute orbital parameters for a subsample out to 50 kpc from the Galactic centre, including proper motion data from Gaia DR3. The orientation of our stars’ orbits, determined for an isolated Milky Way and for a model perturbed by the Large Magellanic Cloud, appears to suggest an accreted origin for at least half of the sample. In addition, we derive atmospheric parameters and chemical abundance ratios for seven stars beyond 20 kpc. The derived α-abundances of five of these stars follow a Milky Way halo-like trend, while the other two display an underabundance of α-elements for their [Fe/H], indicating an association with accretion events. Furthermore, based on the [Sr/Ba] ratio, we can speculate about the conditions for the formation of a potential chemically peculiar carbon-enhanced metal-poor (CEMP) RR Lyrae star. By analysing the stars’ orbital parameters and abundance ratios, we find hints of association of two of our stars with two massive satellites, namely the Large Magellanic Cloud and Sagittarius. Overall, our results are in line with the suggestion that the accretion of sub-haloes largely contributes to the outer halo stellar populations.

    more » « less
  3. null (Ed.)
    Luminous hot stars ( M K s  ≲ 0 mag and T eff  ≳ 8000 K) dominate the stellar energy input to the interstellar medium throughout cosmological time, are used as laboratories to test theories of stellar evolution and multiplicity, and serve as luminous tracers of star formation in the Milky Way and other galaxies. Massive stars occupy well-defined loci in colour–colour and colour–magnitude spaces, enabling selection based on the combination of Gaia EDR3 astrometry and photometry and 2MASS photometry, even in the presence of substantive dust extinction. In this paper we devise an all-sky sample of such luminous OBA-type stars, which was designed to be complete rather than very pure, providing targets for spectroscopic follow-up with the SDSS-V survey. To estimate the purity and completeness of our catalogue, we derive stellar parameters for the stars in common with LAMOST DR6 and we compare the sample to other O and B-type star catalogues. We estimate ‘astro-kinematic’ distances by combining parallaxes and proper motions with a model for the expected velocity and density distribution of young stars; we show that this adds useful constraints on the distances and therefore luminosities of the stars. With these distances we map the spatial distribution of a more stringently selected subsample across the Galactic disc, and find it to be highly structured, with distinct over- and under-densities. The most evident over-densities can be associated with the presumed spiral arms of the Milky Way, in particular the Sagittarius-Carina and Scutum-Centaurus arms. Yet, the spatial picture of the Milky Way’s young disc structure emerging in this study is complex, and suggests that most young stars in our Galaxy ( t age  <  t dyn ) are not neatly organised into distinct spiral arms. The combination of the comprehensive spectroscopy to come from SDSS-V (yielding velocities, ages, etc.) with future Gaia data releases will be crucial in order to reveal the dynamical nature of the spiral arms themselves. 
    more » « less
  4. Abstract We report the kinematic, orbital, and chemical properties of 12 stellar streams with no evident progenitors using line-of-sight velocities and metallicities from the Southern Stellar Stream Spectroscopic Survey ( S 5 ), proper motions from Gaia EDR3, and distances derived from distance tracers or the literature. This data set provides the largest homogeneously analyzed set of streams with full 6D kinematics and metallicities. All streams have heliocentric distances between ∼10 and 50 kpc. The velocity and metallicity dispersions show that half of the stream progenitors were disrupted dwarf galaxies (DGs), while the other half originated from disrupted globular clusters (GCs), hereafter referred to as DG and GC streams. Based on the mean metallicities of the streams and the mass–metallicity relation, the luminosities of the progenitors of the DG streams range between those of Carina and Ursa Major I (−9.5 ≲ M V ≲ −5.5). Four of the six GC streams have mean metallicities of [Fe/H] < −2, more metal poor than typical Milky Way (MW) GCs at similar distances. Interestingly, the 300S and Jet GC streams are the only streams on retrograde orbits in our dozen-stream sample. Finally, we compare the orbital properties of the streams with known DGs and GCs in the MW, finding several possible associations. Some streams appear to have been accreted with the recently discovered Gaia–Enceladus–Sausage system, and others suggest that GCs were formed in and accreted together with the progenitors of DG streams whose stellar masses are similar to those of Draco to Carina (∼10 5 –10 6 M ⊙ ). 
    more » « less

    We measure the enclosed Milky Way mass profile to Galactocentric distances of ∼70 and ∼50 kpc using the smooth, diffuse stellar halo samples of Bird et al. The samples are Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE) K giants (KG) and SDSS/SEGUE blue horizontal branch (BHB) stars with accurate metallicities. The 3D kinematics are available through LAMOST and SDSS/SEGUE distances and radial velocities and Gaia DR2 proper motions. Two methods are used to estimate the enclosed mass: 3D spherical Jeans equation and Evans et al. tracer mass estimator (TME). We remove substructure via the Xue et al. method based on integrals of motion. We evaluate the uncertainties on our estimates due to random sampling noise, systematic distance errors, the adopted density profile, and non-virialization and non-spherical effects of the halo. The tracer density profile remains a limiting systematic in our mass estimates, although within these limits we find reasonable agreement across the different samples and the methods applied. Out to ∼70 and ∼50 kpc, the Jeans method yields total enclosed masses of 4.3 ± 0.95 (random) ±0.6 (systematic) × 1011 M⊙ and 4.1 ± 1.2 (random) ±0.6 (systematic) × 1011 M⊙ for the KG and BHB stars, respectively. For the KG and BHB samples, we find a dark matter virial mass of $M_{200}=0.55^{+0.15}_{-0.11}$ (random) ±0.083 (systematic) × 1012 M⊙ and $M_{200}=1.00^{+0.67}_{-0.33}$ (random) ±0.15 (systematic) × 1012 M⊙, respectively.

    more » « less