skip to main content


Title: Sulfolipid substitution ratios of Microcystis aeruginosa and planktonic communities as an indicator of phosphorus limitation in Lake Erie
Abstract

Phosphorus (P) availability frequently limits primary production in lakes, influences the physiology of phytoplankton, shapes community structure, and can stimulate or constrain the formation of cyanobacterial blooms. Given the importance of P, numerous methods are available to assess P stress in phytoplankton communities. Marine phytoplankton are known to substitute sulfolipids for phospholipids in response to P limitation. We asked whether sulfolipid substitution might serve as an additional indicator of P stress in freshwater phytoplankton communities. The question was addressed using cultures ofMicrocystis aeruginosa, Lake Erie microcosms, and surveys of lipid profiles in Lake Erie during aMicrocystisspp. bloom. Peak area response ratios of the intact polar lipids sulfoquinovosyldiacylglycerol (SQDG) to phosphatidylglycerol (PG) were used as the metric of lipid substitution. In cultures ofM. aeruginosaNIES‐843, the SQDG : PG ratio increased from ~ 0.9 to ~ 3.3 with decreasing P concentration. In P‐limited communities, the SQDG : PG ratio increased from ~ 6 to ~ 11 after 48 h in microcosm controls, while P amendments reduced the ratio to ~ 3. In Lake Erie surveys, the SQDG : PG ratio ranged from ~ 0.4 to ~ 7.4 and was negatively correlated (Pearsonr = −0.62) with total dissolved P. The SQDG : PG ratio was not correlated with concentrations of chlorophylla, soluble reactive P, or N : P molar ratios. These results demonstrated thatM. aeruginosaandMicrocystis‐dominated communities remodel lipid profiles in response to P scarcity, providing a potential short‐term, time‐integrated biomarker of nutrient history and P stress in fresh waters.

 
more » « less
Award ID(s):
1840715
NSF-PAR ID:
10401852
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
68
Issue:
5
ISSN:
0024-3590
Page Range / eLocation ID:
p. 1117-1131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Interactions between bacteria and phytoplankton in the phycosphere have impacts at the scale of whole ecosystems, including the development of harmful algal blooms. The cyanobacteriumMicrocystiscauses toxic blooms that threaten freshwater ecosystems and human health globally.Microcystisgrows in colonies that harbour dense assemblages of other bacteria, yet the taxonomic composition of these phycosphere communities and the nature of their interactions withMicrocystisare not well characterized. To identify the taxa and compositional variance withinMicrocystisphycosphere communities, we performed 16S rRNA V4 region amplicon sequencing on individualMicrocystiscolonies collected biweekly via high‐throughput droplet encapsulation during a western Lake Erie cyanobacterial bloom. TheMicrocystisphycosphere communities were distinct from microbial communities in whole water and bulk phytoplankton seston in western Lake Erie but lacked ‘core’ taxa found across all colonies. However, dissimilarity in phycosphere community composition correlated with sampling date and theMicrocystis16S rRNA oligotype. Several taxa in the phycosphere were specific to and conserved withMicrocystisof a single oligotype or sampling date. Together, this suggests that physiological differences betweenMicrocystisstrains, temporal changes in strain phenotypes, and the composition of seeding communities may impact community composition of theMicrocystisphycosphere.

     
    more » « less
  2. null (Ed.)
    Cyanobacterial Harmful Algal Blooms (CyanoHABs) commonly increase water column pH to alkaline levels ≥9.2, and to as high as 11. This elevated pH has been suggested to confer a competitive advantage to cyanobacteria such as Microcystis aeruginosa . Yet, there is limited information regarding the restrictive effects bloom-induced pH levels may impose on this cyanobacterium’s competitors. Due to the pH-dependency of biosilicification processes, diatoms (which seasonally both precede and proceed Microcystis blooms in many fresh waters) may be unable to synthesize frustules at these pH levels. We assessed the effects of pH on the ecologically relevant diatom Fragilaria crotonensis in vitro , and on a Lake Erie diatom community in situ . In vitro assays revealed F. crotonensis monocultures exhibited lower growth rates and abundances when cultivated at a starting pH of 9.2 in comparison to pH 7.7. The suppressed growth trends in F. crotonensis were exacerbated when co-cultured with M. aeruginosa at pH conditions and cell densities that simulated a cyanobacteria bloom. Estimates demonstrated a significant decrease in silica (Si) deposition at alkaline pH in both in vitro F. crotonensis cultures and in situ Lake Erie diatom assemblages, after as little as 48 h of alkaline pH-exposure. These observations indicate elevated pH negatively affected growth rate and diatom silica deposition; in total providing a competitive disadvantage for diatoms. Our observations demonstrate pH likely plays a significant role in bloom succession, creating a potential to prolong summer Microcystis blooms and constrain diatom fall resurgence. 
    more » « less
  3. Rudi, Knut (Ed.)
    ABSTRACT Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [ mcyA–J ]), partial (truncated mcyA , complete mcyBC , and missing mcyD–J ), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ , suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing. 
    more » « less
  4. ABSTRACT The frequency and intensity of cyanobacterial blooms are increasing worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms need to be critically evaluated to understand microbial drivers and modulators of the blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics analyses to measure the microbial community composition and metabolic responses of the cyanobacterium Microcystis aeruginosa in a coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to representative concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase using a DIP source produced by moribund and decaying microorganisms when the P source was insufficient. During this process, M. aeruginosa accumulated several intermediates in energy metabolism pathways to provide energy for sustained high growth rates and increased intracellular sugars to enhance its competitive capacity and ability to defend itself against microbial attack. It also produced a variety of toxic substances, including microcystins, to inhibit metabolite formation via energy metabolism pathways of aquatic microorganisms, leading to a negative effect on bacterial and eukaryotic microbial richness and diversity. Overall, compared with the monoculture system, the growth of M. aeruginosa was accelerated in coculture, while the growth of some cooccurring microorganisms was inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. These findings provide valuable information for clarifying how M. aeruginosa can potentially modulate its associations with other microorganisms, with ramifications for its dominance in aquatic ecosystems. IMPORTANCE We measured the microbial community composition and metabolic responses of Microcystis aeruginosa in a microcosm coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average concentrations in Lake Taihu. In the coculture system, DIP is depleted and the growth and production of aquatic microorganisms can be stressed by a lack of DIP availability. M. aeruginosa could accelerate its growth via interactions with specific cooccurring microorganisms and the accumulation of several intermediates in energy metabolism-related pathways. Furthermore, M. aeruginosa can decrease the carbohydrate metabolism of cooccurring aquatic microorganisms and thus disrupt microbial activities in the coculture. This also had a negative effect on bacterial and eukaryotic microbial richness and diversity. Microcystin was capable of decreasing the biomass of total phytoplankton in aquatic microcosms. Overall, compared to the monoculture, the growth of total aquatic microorganisms is inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. The only exception is M. aeruginosa in the coculture system, whose growth was accelerated. 
    more » « less
  5. Summary

    Zinc concentrations in pelagic surface waters are within the range that limits growth in marine phytoplankton cultures. However, the influence of zinc on marine primary production and phytoplankton communities is not straightforward due to largely uncharacterized abilities for some phytoplankton to access zinc species that may not be universally bioavailable and substitute zinc with cobalt or cadmium. We used a quantitative proteomic approach to investigate these strategies and other responses to zinc limitation in the coccolithophoreEmiliania huxleyi, a dominant species in low zinc waters. Zinc limitation resulted in the upregulation of metal transport proteins (ZIP, TroA‐like) and COG0523 metallochaperones. Some proteins were uniquely sensitive to growth under replete zinc, substitution of zinc with cobalt, or enhancement of growth with cadmium, and may be useful as biomarkers of zinc stress or substitutionin situ. Several proteins specifically upregulated under cobalt‐supported or cadmium‐enhanced growth appear to reflect stress responses, despite titration of these metals to optimal nutritive levels. Relief from zinc limitation by zinc or cadmium resulted in increased expression of a δ‐carbonic anhydrase. Our inability to detect metal binding enzymes that are specifically induced under cobalt‐ or cadmium‐supported growth suggests cambialism is important for zinc substitution inE. huxleyi.

     
    more » « less